Skip to main content
Log in

Geoenvironmental Assessment of Water Chemistry in Watercourses of the Bureya R. Basin in Permafrost Occurrence Areas

  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Water chemistry has been studied in different-order tributaries of the Bureya R. (Far East), taking into account the geoenvironmental processes of organic carbon transformations in the active biosphere layer (seasonally thawing/freezing soils) at the boundary with permafrost. Changes in water chemistry were evaluated with the use of the spectral characteristic of soluble organic substances (SOM) in aqueous extracts of soils from different horizons of the seasonally thawed layer and the activity of microbial complexes with respect to humic substances. Microbial complexes of the active layer and the depth to the permafrost horizon were found to be the governing factors in SOM composition. Experiments showed that, the temperature being the same, the qualitative composition of SOM in watercourses during permafrost thawing can be significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Inoculum is a suspension of living cells introduced into a nutrient medium in order to obtain a new culture of a microorganism and to assess the activity of microbial complexes.

REFERENCES

  1. Mordovin, A.M., Shesterkin, V.P., and Antonov, A.L., Reka Bureya: gidrologiya, gidrokhimiya, ikhtiofauna (The Bureya River: Hydrology, Hydrochemistry, and Ichthyofauna), Khabarovsk, DVO RAN, 2006.

  2. Murashova, E.G., Bogging in the Amur Region, Stroitel’stvo i prirodoobustroistvo (Construction and Nature Management), Blagoveshchensk, DV GAU, 2016, pp. 72–75.

    Google Scholar 

  3. Namsaraev, B.B., Barkhutova, D.D., and Khasinov, V.V. Polevoi praktikum po vodnoi mikrobiologii i gidrokhimii (Field Training Guide in Water Microbiology and Hydrochemistry), Ulan-Ude, BGU, 2006.

  4. Namsaraev, B.B., Khakhinov, V.V., and Turunkhaev, A.V., Bog ecosystems of the Svyatoi Nos Peninsula Isthmus, Geogr. Prir. Resur., 2009, no. 4, pp. 66–71.

  5. Novorotskii, P.V., Long-term air temperature variations in the Bureya River basin, Geogr. Prir. Resur, 2013, no. 2, pp. 118–124.

  6. SanPiN (Sanitary Regulations and Standards) 2.1.4.1074-01. Pit’evaya voda (Drinking Water). URL: https://eksorb.com/analiz-vody/osnovnye-pokazateli.

  7. Shesterkin, V.P., Tyrma River hydrochemistry, Regional. Probl., 2021, vol. 24, nos. 2–3, pp. 47–51.

    Google Scholar 

  8. Shesterkina, N.M., Talovskaya, V.S., Ri, T.D., and Shesterkin, V.P., Hydrochemistry of Bureya Reservoir tributaries, Presnovodnye ekosistemy basseina reki Amur (Freshwater Ecosystems of the Amur River Basin), Vladivostok, Dal’nauka, 2008, pp. 18–27.

    Google Scholar 

  9. Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., and Ermolaev, A.M., Application of spectrophotometry for the determination of humic substances in permafrost deposits, Kriosf. Zemli, 2015, vol. 19, no. 4, pp. 107–113.

    Google Scholar 

  10. Bagard, M.L., Chabaux, F., Pokrovsky, O.S., Viers, J., Prokushkin, A.S., Stille, P., Rihs, S., Schmitt, A., and Dupré, B., Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas, Geochim. Cosmochim. Acta, 2011, no. 75, pp. 3335–3357.

  11. Balcarczyk, K.L., Jones, J.B., Jaffe, R., Maie, N., Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 2009, no. 94, pp. 255–270.

  12. Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., et al., Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska, Molec. Ecol., 2015, vol. l, no. 24 (1), pp. 222–234.

  13. Exley, C.A., Biogeochemical cycle for aluminum?, J. Inorg. Biochem., 2003, vol. 397, pp. 1–7.

    Article  Google Scholar 

  14. Frey, K.E. and McClelland, J.W., Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol. Processes, 2009, vol. 23, pp. 169–182.

    Article  Google Scholar 

  15. Hansen, A.A., Herbert, R.A., Mikkelsen, K., Jensen, L.L., Kristoffersen, T., et al., Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway, Environ. Microbiol., 2007, vol. 9, no. 11, pp. 2870–2884.

    Article  Google Scholar 

  16. Hebsgaard, M.B., Phillips, M.J., and Willerslev, E., Geologically ancient DNA: fact or artefact? Trends Microbiol., 2005, vol. 13, pp. 212–220.

    Article  Google Scholar 

  17. Herndon, E.M., Yang, Z., Bargar, J., Janot, N., Regier, T.Z., et al., Geochemical drivers of organic matter decomposition in arctic tundra soils, Biogeochemistry, 2015, no. 126, pp. 397–414.

  18. Kumar, S., Organic chemistry. Spectroscopy of Organic Compounds, Department of Chemistry, Guru Nanak Dev University, 2006, pp. 1–36.

    Google Scholar 

  19. Laglera, L.M., Vandenberg C.M.G., Evidence for geochemical control of iron by humic substances in seawater, Limnol. Oceanogr., 2009, vol. 54, pp. 610–619. https://doi.org/10.4319/lo.2009.54.2.0610

    Article  Google Scholar 

  20. Lee, B.M., Seo, Y.S., and Hur, J., Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC, Water Research, 2015, vol. 73, pp. 242–251. https://doi.org/10.1016/j.watres.2015.01.020

    Article  Google Scholar 

  21. Lipson, D.A., Zona, D., Raab, T.K., Bozzolo, F., Mauritz, M., and Oechel, W.C., Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem, Biogeosciences, 2012, vol. 9, pp. 577–591. https://doi.org/10.5194/bg-9-577-2012

    Article  Google Scholar 

  22. MacDonald, E.N., Tank, S.E., Kokelj, S.V., Froese, D.G., and Hutchins, R.H.S., Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic, Environ. Res. Lett., 2021, vol. 16, no. 2, e024036. https://doi.org/10.1088/1748-9326/abd971

    Article  Google Scholar 

  23. Nishioka, J., Nakatsuka T., Ono K., Volkov Y.N., Scherbinin A., and Shiraiwa, T., Quantitative evaluation of iron transport processes in the Sea of Okhotsk, Prog. Oceanogr., 2014, vol. 126, pp. 180–193. https://doi.org/10.1016/j.pocean.2014.04.011

    Article  Google Scholar 

  24. Olefeldt, D., Persson, A., and Turetsky, M.R., Influence of the permafrost boundary on dissolved organic matter characteristics in rivers within the Boreal and Taiga Plains of western Canada, Environ. Res. Lett., 2014, vol. 9, no. 3, 035005. https://doi.org/10.1088/1748-9326/9/3/035005

    Article  Google Scholar 

  25. Perminova, I.V., From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology, Pure Appl. Chem., 2019, vol. 91, no. 5, pp. 851–864. https://doi.org/10.1515/pac-2018-1110

    Article  Google Scholar 

  26. Pokrovsky, O.S., Manasypov, R.M., Loiko, S.V., Krickov, I.A., Kopysov, S.G., Kolesnichenko, L.G., Vorobyev, S.N., and Kirpotin, S.N., Trace element transport in western Siberian rivers across a permafrost gradient, Biogeosciences, 2016, vol. 13, pp. 1877–1900. https://doi.org/10.5194/bg-13-1877-2016

    Article  Google Scholar 

  27. Quinton, W.L., Hayashi, M., and Chasmer, L.E., Peatland hydrology of discontinuous permafrost in the Northwest Territories: overview and synthesis, Can. Water Resour. J., 2009, vol. 34, pp. 311–328. https://doi.org/10.4296/cwrj3404311

    Article  Google Scholar 

  28. Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V., and Gilichinsky, D., Microbial life in permafrost, Adv. Space Res., 2004, vol. 33, pp. 1215–1221. https://doi.org/10.1016/j.asr.2003.06.024

    Article  Google Scholar 

  29. Roehm, C.L., Giesler, R., and Karlsson, J., Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading permafrost mire complex, J. Geophys. Res., 2009, vol. 114, G03006. https://doi.org/10.1029/2008JG000863

    Article  Google Scholar 

  30. Schlesinger, W.H. and Bernhardt, E., Biogeochemistry. An Analysis of Global Change, Academic Press, 3rd Ed., 2013.

    Google Scholar 

  31. Schumann, R., Schiewer, U., Karsten, U., and Rieling, T., Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity, Aquat. Microb. Ecol., 2003, vol. 32, pp. 137–150. https://doi.org/10.3354/ame032137

    Article  Google Scholar 

  32. Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., et al., Climate change and the permafrost carbon feedback, Nature, 2015, vol. 520, pp. 171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  33. Steven, B., Briggs, G., Mckay, C.P., Pollard, W.H., Greer, C.W., and Whyte, L.G., Characterization of the microbial diversity in a permafrost sample from the Canadian High Arctic using culture-dependent and culture-independent methods, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 513–523. https://doi.org/10.1111/j.1574-6941.2006.00247.x

    Article  Google Scholar 

  34. Tashiro, Y., Yoh, M., Shiraiwa, T., Onishi, T., Shesterkin, V., and Kim, V., Seasonal variations of dissolved iron concentration in active layer and rivers in permafrost areas, Russian Far East, Water, 2020, vol.12, 2579. https://doi.org/10.3390/w12092579

    Article  Google Scholar 

  35. Tfaily, M.M., Hamdan, R., Corbett, J.E., Chanton, J.P., Glaser, P.H., Cooper, W.T., Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques, Geochim. Cosmochim. Acta, 2013, vol. 112, pp. 116–29. https://doi.org/10.1016/j.gca.2013.03.002

    Article  Google Scholar 

  36. Vishnivetskaya, T., Petrova, M.A., Urbance, J., Ponder, M., et al., Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods, Astrobiology, 2006, vol. 6, pp. 400–414. https://doi.org/10.1089/ast.2006.6.400

    Article  Google Scholar 

  37. Wauthy, M., Rautio, M., Christoffersen, K.S., Forsström, L., Laurion, I., et al., Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw, Limnol. Oceanogr. Lett., 2018, vol.3, no.3, pp. 186–198. https://doi.org/10.1002/lol2.10063

    Article  Google Scholar 

  38. Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T., and Striegl, R.G., Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska, Environ. Res. Lett., 2018, vol. 13, e065011. https://doi.org/10.1088/1748-9326/aac4ad

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. N. Litvinenko.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyeva, L.M., Litvinenko, Z.N., Andreeva, D.V. et al. Geoenvironmental Assessment of Water Chemistry in Watercourses of the Bureya R. Basin in Permafrost Occurrence Areas. Water Resour 49 (Suppl 2), S36–S46 (2022). https://doi.org/10.1134/S0097807822080061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822080061

Keywords:

Navigation