Skip to main content
Log in

A study of heat transport at the ice base and structure of the under-ice water layer in Southern Baikal

  • Hydrophysical Processes
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Experimental data and a new model of ice buildup are used to assess and to study variations of heat flux at the water–ice interface. The latter plays an important part in ice cover formation but still is poorly known because of the lack of field temperature measurements with sufficient spatial and temporal resolution along the phase transition boundary, which knowledge gap is filled by this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslamov, I.A., et al., Estimate of heat flux at the ice–water interface in Lake Baikal from experimental data, Dokl. Earth Sci., 2014, vol. 457, no. 2, pp. 982–985. http://naukarus.com/j/doklady-akademii-nauk.

    Article  Google Scholar 

  2. Belolipetskii, P.V., Genova, S.N., and Gritsko, V.V., A computer model of the vertical structure of a water body, Vychislitel’nye Tekhnologii, 2004, vol. 9, Vestn. KazNU, Ser. Matem., Mekh., Inform., 2004, no. 3, iss. 42, Joint Issue, P. 1, pp. 289–294.

    Google Scholar 

  3. Borodai, N.I., Materials for studying Baikal ice cover structure, Tr. BLS, vol. 79, pp. 70–114.

  4. Vabishchevich, P.N., Chislennye metody resheniya zadach so svobodnoi granitsei (Numerical Methods for Solving Free Boundary Problems), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  5. Verbolov, V.I, Currents and water exchange in Baikal, Vodn. Resur., 1996, vol. 23, no. 4, pp. 413–423.

    Google Scholar 

  6. Verbolov, V.I., Sokol’nikov, V.M., and Shimaraev, M.N., Gidrometeorologicheskii rezhim i teplovoi balans ozera Baikal (Hydrometeorological Regime and Heat Balance of Lake Baikal), Moscow: Nauka, 1965.

    Google Scholar 

  7. Vereshchagin, G.Yu. and Kharkeevich, L.F., Baikal ice cover near Angara outlet, Tr. BLS, vol. 9, pp. 45–69.

  8. Voevodin, A.F. and Grankina, T.B, Numerical modeling ice cover growth in a water body, Sib. Zhurn. Industr. Matem., 2006, vol. 9, no. 25.

  9. Gol'dman, N.L, Classical and generalized solutions of a two-phase inverse Stefan boundary problem, Vychisl. Metody Program., 2002, vol. 3, pp. 133–143.

    Google Scholar 

  10. Granin, N.G., et al., Convection and mixing under Baikal Lake ice, Sib. Ekol. Zh., 1999, no. 6, pp. 597–600.

    Google Scholar 

  11. Granin, N.G., et al., Turbulent mixing of Baikal Lake water in the layer adjacent to ice and its role in diatom alga development, Dokl. Ross. Akad. Nauk, 1999, vol. 366, no. 6, pp. 835–839.

    Google Scholar 

  12. Granin, N.G, Ringed Baikal, Nauka Perv. Ruk, 2009, no. 3, pp. 22–23.

    Google Scholar 

  13. Granin, N.G., et al., Field studies and some results of numerical modeling of a ring structure on Baikal ice, Dokl. Earth Sci., 2015, vol. 461, no. 1, pp. 316–320.

    Article  Google Scholar 

  14. Dovgii, T.N., Podvodnaya solnechnaya radiatsiya na Baikale (Underwater Solar Radiation in Baikal), Novosibirsk: Nauka, 1977.

    Google Scholar 

  15. Dybovskii, V. and Godlevskii, V., Physico-geographic studies in Baikal in 1869–1876, Tr. Vost.-Sib. Otd. Imper. Russ. Geogr. Obshch., 1897, vol. 1, no. 1, pp. 1–62.

    Google Scholar 

  16. Zhdanov, A.A., Granin, N.G., and Shimaraev, M.N, The generation mechanism of under-ice currents in Lake Baikal, Dokl. Earth Sci., 2001, vol. 377, no. 3, pp. 329–332.

    Google Scholar 

  17. Zhdanov, A.A., Granin, N.G., and Shimaraev, M.N, Under-ice currents in Baikal based on new experimental data, Geogr. Prir. Res., 2002, no. 1, pp. 79–83.

    Google Scholar 

  18. Kolesnikov, A.G, Calculating daily temperature variation by heat balance on its surface, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1954, no. 2, pp. 190–194.

    Google Scholar 

  19. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. VI, Gidrodinamika (Hydrodynamics), Moscow: Fizmatlit, 2015.

    Google Scholar 

  20. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fuid Mechanics), Moscow: Drofa, 2003.

    Google Scholar 

  21. Menshutkin, V.V, Hydrology of under-ice water layer in Baikal, Tr. LIN SOAN SSSR, 1964, vol. 5, no. 25, pp. 52–63.

    Google Scholar 

  22. Menshutkin, V.V, Heat exchange through the ice cover of the Southern Baikal, Tr. LIN SOAN SSSR, 1964, vol. 5, no. 25, pp. 64–81.

    Google Scholar 

  23. Pivovarov, A.A., Termika zamerzayushchikh vodoemov (Thermal Processes in Freezing Water Bodies), Moscow: Mosk. Gos. Univ., 1972.

    Google Scholar 

  24. Samarskii, A.A. and Vabishchevich, P.N., Chislennye metody resheniya zadach konvektsii-diffuzii (Numerical Methods for Solving Convection–Diffusion Problems), Moscow: Izd. URSS, 2004.

    Google Scholar 

  25. Sokol'nikov, V.M., Some regularities in ice cover formation and growth: case study of Lake Baikal, Tr. BLS, vol. 15, pp. 58–64.

  26. Sokol'nikov, V.M., On the radiation properties of ice and snow and some ice-regime phenomena in Maloe More/Lake Baikal, Tr. BLS, vol. 17, pp. 104–107.

  27. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Solution of Ill-Posed Problems), Moscow: Nauka, 1979.

    Google Scholar 

  28. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki: Uchebnoe posobie (Equations of Mathematical Physics: A Textbook), Moscow: Mosk. Gos. Univ., 1999.

    Google Scholar 

  29. Treskov, A.A, On the relationship between maximal ice thickness and winter temperature in Baikal, Tr. Irkut. Magnit.-Meteor. Observ., 1926, vol. 1, no. 1, pp. 72–79.

    Google Scholar 

  30. Tsurikov, V.L, Some remarks regarding formulas of ice cover accretion, Tr. Baikal. Limnol. St., 1939, vol. 9, pp. 115–124.

    Google Scholar 

  31. Sherstyankin, P.P., Eksperimental’nye issledovaniya podlednogo svetovogo polya ozera Baikal (Experimental Studies of Under-Ice Light Field in Lake Baikal), Moscow: Nauka, 1975.

    Google Scholar 

  32. Shlikhting, G., Teoriya pogranichnogo sloya (Boundary Layer Theory), Moscow: Nauka, 1974.

    Google Scholar 

  33. Shuleikin, V.V., Fizika morya (Marine Physics), Moscow: Nauka, 1083.

    Google Scholar 

  34. Ashton, G.D., River and Lake Ice Engineering, Littleton: Water Res. Publ., 1986.

    Google Scholar 

  35. Aslamov, I.A., et al., Ice-water heat exchange during ice growth in Lake Baikal, J. Great Lakes Res., 2014, vol. 40, no. 3, pp. 599–607.

    Article  Google Scholar 

  36. Bengtsson, L, Dispersion in ice-covered lakes, Nord. Hydrol., 1986, no. 17, pp. 151–170.

    Google Scholar 

  37. Bengtsson, L., et al., Field investigation of winter thermo- and hydrodynamics in a small Karelian lake, Water, 1996, vol. 41, no. 7, pp. 1502–1513.

    Google Scholar 

  38. Bengtsson, L, Mixing in ice-covered lakes, Hydrobiologia, 1996, vol. 322, nos. 1-3, pp. 91–97.

    Article  Google Scholar 

  39. Bengtsson, L. and Svensson, T, Thermal regime of ice covered Swedish lakes, Nord. Hydrol., 1996, vol. 27, no. 1, pp. 39–56.

    Google Scholar 

  40. Bernhardt, J., et al., Lake ice phenology in Berlin- Brandenburg from 1947–2007: observations and model hindcasts, Clim. Change, 2012, no. 112, pp. 791–817.

    Article  Google Scholar 

  41. Colman, J.A. and Armstrong, D.E, Horizontal diffusivity in a small, ice-covered lake, Limnol. Ocean, 1983, no. 28, pp. 1020–1026.

    Article  Google Scholar 

  42. Duguay, C.R., et al., Ice-cover variability on shallow lakes at high latitudes: model simulations and observations, Hydrol. Process, 2003, vol. 17, no. 17, pp. 3465–3483.

    Article  Google Scholar 

  43. Ellis, C.R., Stefan, H.G., and Gu, R, Water temperature dynamics and heat transfer beneath the ice cover of a lake, Limnol. Ocean, 1991, vol. 36, no. 2, pp. 324–335.

    Article  Google Scholar 

  44. Elo, A.-R., et al., The effects of climate change on the temperature conditions of lakes, Boreal Environ. Res., 1998, vol. 3, pp. 137–150.

    Google Scholar 

  45. Elo, A.-R. and Vavrus, S.J, Ice modeling calculation, comparison of the PROBE and LIMNOS models, Selected Articles from the Proceedings of 27th Congress of the International Association of Theoretical and Applied Limnology, Verch. Internat. Verein. Limnology, 2000, vol. 27, Dublin, 2000, pp. 2816–2819.

    Google Scholar 

  46. Fang, X., Ellis, C.R., and Stefan, H.G, Simulation and observation of ice formation (freeze-over) in a lakes, Cold Reg. Sci. Technol., 1996, vol. 24, pp. 129–145.

    Article  Google Scholar 

  47. Farmer, D.M, Penetrative convection in the absence of mean shear, Q.J.R. Meteorol. Soc., 1975, vol. 101, no. 430, pp. 869–891.

    Article  Google Scholar 

  48. Forrest, A.L., et al., Convectively driven transport in temperate lakes, Limnol. Oceanogr., 2008, vol. 53, no. 5, pp. 2321–2332.

    Article  Google Scholar 

  49. Forrest, A.L., et al., A cyclonic gyre in an ice-covered lake, Limnol. Oceanogr., 2013, vol. 58, no. 1, pp. 363–375.

    Article  Google Scholar 

  50. Fujisaki, A., et al., Model-simulated interannual variability of Lake Erie ice cover, circulation, and thermal structure in response to atmospheric forcing, 2003–2012, J. Geophys. Res. Ocean., 2013, vol. 118, no. 9, pp. 4286–4304.

    Google Scholar 

  51. Granin, N.G., et al., Turbulent mixing under ice and the growth of diatoms in Lake Baikal, Verh. Internat. Verein. Limnol., 2000, vol. 27, pp. 2812–2814.

    Google Scholar 

  52. Harleman, D.R.F, Hydrothermal modeling of reservoirs in cold regions: status and research needs, Proc. Cold Reg. Hydrol. Symp. AWRA, Fairbanks, 1986, pp. 39–49.

    Google Scholar 

  53. Jakkila, J., et al., Radiation transfer and heat budget during the ice season in Lake Paajarvi, Finland, Aquat. Ecol., 2009, vol. 43, no. 3, pp. 681–692.

    Article  Google Scholar 

  54. Jewson, D.H., et al., Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal, Aquat. Ecol., 2009, vol. 43, no. 3, pp. 673–679.

    Article  Google Scholar 

  55. Karman, T, Turbulence and skin friction, J. Aeronaut. Sci., 1934, vol. 1, no. 1, pp. 1–20.

    Article  Google Scholar 

  56. Kirillin, G. and Terzhevik, A, Thermal instability in freshwater lakes under ice: effect of salt gradients or solar radiation?, Cold Reg. Sci. Technol., 2011, vol. 65, no. 2, pp. 184–190.

    Article  Google Scholar 

  57. Kirillin, G.B., et al., Axisymmetric circulation driven by marginal heating in ice-covered lakes, Geophys. Rev. Lett., 2015, vol. 42, no. 8, pp. 2893–2900.

    Article  Google Scholar 

  58. Launiainen, J. and Cheng, B, Modelling of ice thermodynamics in natural water bodies, Cold Reg. Sci. Technol., 1998, vol. 27, no. 3, pp. 153–178.

    Article  Google Scholar 

  59. Leppäranta, M., A growth model for black ice, snow ice and snow thickness in subarctic basins, Nord. Hydrol., 1983, vol. 14, no. 2, pp. 59–70.

    Google Scholar 

  60. Leppäranta, M., A review of analytical models of seaice growth, Atmosphere-Ocean, 1993, vol. 31, no. 1, pp. 123–138.

    Article  Google Scholar 

  61. Leppäranta, M, Modelling the formation and decay of lake ice, The Impact of Climate Change on European Lakes, 2010. http://www.springer.com/us/book/9789048129447.

    Google Scholar 

  62. Leppäranta, M., Terzhevik, A., and Shirasawa, K, Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia, Hydrol. Res., 2010, vol. 41, no. 1, pp. 50–62.

    Article  Google Scholar 

  63. Leppäranta, M. and Uusikivi, J, The annual cycle of Lake Paajarvi ice, Lammi Notes, 2002, vol. 29, pp. 4–9.

    Google Scholar 

  64. Leppäranta, M. and Wang, K, The ice cover on small and large lakes: scaling analysis and mathematical modelling, Hydrobiologia, 2008, vol. 599, no. 1, pp. 183–189.

    Article  Google Scholar 

  65. Likens, G.E. and Ragotzkie, R.A, Vertical water motions in a small ice-covered lake, J. Geophys. Res., 1965, vol. 70, no. 10, pp. 2333–2344.

    Article  Google Scholar 

  66. Liston, G.E. and Hall, D.K, An energy-balance model of lake-ice evolution, J. Glaciol., 1995, vol. 41, no. 138, pp. 373–382.

    Article  Google Scholar 

  67. Magnuson, J.J., et al., Historical trends in lake and river ice cover in the Northern Hemisphere, Science (Washington, D.C.), 2000, vol. 289, no. 5485, pp. 1743–1746.

    Article  Google Scholar 

  68. Malm, J, Some properties of currents and mixing in a shallow ice-covered lake, Water Resour. Res., 1999, vol. 35, no. 1, pp. 221–232.

    Article  Google Scholar 

  69. McDougall, T.J. and Barker, P.M., Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceano-graphic Toolbox, 2011. http://www.teos-10.org/pubs/Getting_Started.pdf.

    Google Scholar 

  70. Menard, P., et al., Simulation of ice phenology on a large lake in the Mackenzie River Basin (1960–2000), 59th Eastern Snow Conference. Stowe, Vermont, USA, 2002, pp. 3–12.

    Google Scholar 

  71. Menard, P., et al., Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada, Hydrol. Process, 2002, vol. 16, no. 18, pp. 3691–3706.

    Article  Google Scholar 

  72. Mironov, D, Radiatively driven convection in ice-covered lakes: observations, scaling, and a mixed layer model, J. Geophys. Res., 2002, vol. 107, no. C4, p. 3032.

    Google Scholar 

  73. Onuki, A., Shibuya, Y., and Kozaki, S., First-order phase transition with a moving boundary. II. Theory of ice formation, J. Low Temp. Phys., 1974, vol. 15, nos. 1-2, pp. 161–168.

    Article  Google Scholar 

  74. Oveisy, A., Boegman, L., and Imberger, J, Threedimensional simulation of lake and ice dynamics during winter, Limnol. Ocean, 2012, vol. 57, no. 1, pp. 1–15.

    Article  Google Scholar 

  75. Patterson, J.C. and Hamblin, P.F, Thermal simulation of a lake with winter ice cover, Limnol. Oceanogr., 1988, vol. 33, no. 3, pp. 323–338.

    Article  Google Scholar 

  76. Pieters, R. and Lawrence, G.A, Effect of salt exclusion from lake ice on seasonal circulation, Limnol. Oceanogr., 2009, vol. 54, no. 2, pp. 401–412.

    Article  Google Scholar 

  77. Pushistov, P.Y. and Ievlev, K.V, Numerical eddyresolving model of non-stationary penetrative convection in spring solar heating of ice-covering lakes, Bull. Inst. Comput. Math. Math. Geophys, 2000, vol. 5, pp. 55–63.

    Google Scholar 

  78. Rizk, W., Kirillin, G., and Leppäranta, M., Basin-scale circulation and heat fluxes in ice-covered lakes, Limnol. Oceanogr., 2014, vol. 59, no. 2, pp. 445–464.

    Article  Google Scholar 

  79. Speranskaya, A.A, Turbulent processes within the “sub-ice” layer of a basin, Int. Oceanogr. Congress, New York; Washington: AAAS, 1959, pp. 422–426.

    Google Scholar 

  80. Stefan, J., Über die Theorie der Eisbildung, insbesondere über Eisbildung im Polarmeere, Ann. Phys. (New York), 3rd Ser., 1891, vol. 42, pp. 269–286.

    Google Scholar 

  81. Svensson, T, Temperature and heat Turnover in Lakes during the Winter, Swedish Council for Building Research, Stockholm, 1987.

    Google Scholar 

  82. Wang, J., Hu, H., and Schwab, D, Development of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 2003–2004, J. Great Lakes Res., 2010, vol. 36, no. 3, pp. 425–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Aslamov.

Additional information

Original Russian Text © I.A. Aslamov, V.V. Kozlov, G.B. Kirillin, I.B. Mizandrontsev, K.M. Kucher, M.M. Makarov, N.G. Granin, 2017, published in Vodnye Resursy, 2017, Vol. 44, No. 3, pp. 296–310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslamov, I.A., Kozlov, V.V., Kirillin, G.B. et al. A study of heat transport at the ice base and structure of the under-ice water layer in Southern Baikal. Water Resour 44, 428–441 (2017). https://doi.org/10.1134/S0097807817030034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807817030034

Keywords

Navigation