Skip to main content
Log in

Wigner Measures and Coherent Quantum Control

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We introduce Wigner measures for infinite-dimensional open quantum systems; important examples of such systems are encountered in quantum control theory. In addition, we propose an axiomatic definition of coherent quantum feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The definition of a pseudodifferential operator \( \widehat{F}{} \) in \( {\mathcal L} _2(Q,\mu)\) with symbol \(F\) can be found in [5].

  2. The Kolmogorov integral is the trace in the tensor product of the space of functions on \(Q\) and the space of measures on \(Q\); \(\rho_T^2\) is an element of this space (for the original definition, which involves neither the tensor product nor the trace, see [8]).

References

  1. D. I. Bondar and A. N. Pechen, “Uncomputability and complexity of quantum control,” Sci. Rep. 10, 1195 (2020).

    Article  Google Scholar 

  2. J. Gough and M. R. James, “Quantum feedback networks: Hamiltonian formulation,” Commun. Math. Phys. 287 (3), 1109–1132 (2009).

    Article  MathSciNet  Google Scholar 

  3. J. Gough, T. S. Ratiu, and O. G. Smolyanov, “Feynman, Wigner, and Hamiltonian structures describing the dynamics of open quantum systems,” Dokl. Math. 89 (1), 68–71 (2014) [transl. from Dokl. Akad. Nauk 454 (4), 379–382 (2014)].

    Article  MathSciNet  Google Scholar 

  4. J. Gough, T. S. Ratiu, and O. G. Smolyanov, “Wigner measures and quantum control,” Dokl. Math. 91 (2), 199–203 (2015) [transl. from Dokl. Akad. Nauk 461 (5), 503–508 (2015)].

    Article  MathSciNet  Google Scholar 

  5. V. V. Kozlov and O. G. Smolyanov, “Wigner function and diffusion in a collision-free medium of quantum particles,” Theory Probab. Appl. 51 (1), 168–181 (2007) [transl. from Teor. Veroyatn. Primen. 51 (1), 109–125 (2006)].

    Article  MathSciNet  Google Scholar 

  6. V. V. Kozlov and O. G. Smolyanov, “Wigner measures on infinite-dimensional spaces and the Bogolyubov equations for quantum systems,” Dokl. Math. 84 (1), 571–575 (2011) [transl. from Dokl. Akad. Nauk 439 (5), 600–604 (2011)].

    Article  MathSciNet  Google Scholar 

  7. S. Lloyd, “Coherent quantum feedback,” Phys. Rev. A 62 (2), 022108 (2000).

    Article  MathSciNet  Google Scholar 

  8. M. Loève, Probability Theory (Springer, New York, 1977), Vol. 1, Grad. Texts Math. 45.

    MATH  Google Scholar 

  9. S. Mazzucchi, Mathematical Feynman Path Integrals and Their Applications (World Scientific, Hackensack, NJ, 2009).

    Book  Google Scholar 

  10. J. Montaldi and O. G. Smolyanov, “Transformations of measures via their generalized densities,” Russ. J. Math. Phys. 21 (3), 379–385 (2014).

    Article  MathSciNet  Google Scholar 

  11. Principles and Applications of Quantum Control Engineering: Papers of a Theo Murphy Meeting Issue, Kavli R. Soc. Int. Cent., Chicheley Hall, 2011, Ed. by J. E. Gough et al. (R. Soc. Publ., London, 2012), Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. 370 (1979).

    Google Scholar 

  12. T. S. Ratiu and O. G. Smolyanov, “Hamiltonian and Feynman aspects of secondary quantization,” Dokl. Math. 87 (3), 289–292 (2013) [transl. from Dokl. Akad. Nauk 450 (2), 150–153 (2013)].

    Article  MathSciNet  Google Scholar 

  13. O. G. Smolyanov, “Measurable polylinear and power functionals in certain linear spaces with a measure,” Sov. Math., Dokl. 7, 1242–1246 (1966) [transl. from Dokl. Akad. Nauk SSSR 170 (3), 526–529 (1966)].

    MATH  Google Scholar 

  14. O. G. Smolyanov and E. T. Shavgulidze, Functional Integrals (URSS, Moscow, 2015) [in Russian].

    Google Scholar 

  15. O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula,” J. Math. Phys. 43 (10), 5161–5171 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Funding

J. E. Gough was supported by the French National Research Agency (ANR) grant Q-COAST ANR 19-CE48-0003, and through a European Research Council (ERC) project under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 884762). T. S. Ratiu was partially supported by the National Natural Science Foundation of China grant no. 11871334 and by the NCCR Swiss MAP grant of the Swiss National Science Foundation. O. G. Smolyanov was supported by the Ministry of Science and Higher Education of the Russian Federation within the Russian Academic Excellence Project “5-100.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Gough.

Additional information

Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 59–66 https://doi.org/10.4213/tm4181.

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gough, J.E., Ratiu, T.S. & Smolyanov, O.G. Wigner Measures and Coherent Quantum Control. Proc. Steklov Inst. Math. 313, 52–59 (2021). https://doi.org/10.1134/S0081543821020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020061

Navigation