Skip to main content
Log in

Discrete Geodesic Flows on Stiefel Manifolds

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds \(V_{n,r}\). In particular, for \(n=3\) and \(r=2\), after the identification \(V_{3,2}\cong\mathrm{SO}(3)\), we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator \(I=(1,1,2)\). In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on \(V_{n,r}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we use the identifications \( \mathrm{so} (n)\cong \mathrm{so} (n)^*\) and \( \mathrm{so} (r)\cong \mathrm{so} (r)^*\) induced by the invariant scalar product \(\langle \eta_1,\eta_2\rangle=-(1/2) \operatorname{tr} (\eta_1 \eta_2)\).

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (URSS, Moscow, 2002). Engl. transl.: Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006), Encycl. Math. Sci. 3.

    MATH  Google Scholar 

  2. M. Bialy, A. E. Mironov, and S. Tabachnikov, “Wire billiards, the first steps,” Adv. Math. 368, 107154 (2020); arXiv: 1905.13617 [math.DS].

    Article  MathSciNet  MATH  Google Scholar 

  3. A. M. Bloch, R. W. Brockett, and P. E. Crouch, “Double bracket equations and geodesic flows on symmetric spaces,” Commun. Math. Phys. 187 (2), 357–373 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. M. Bloch, P. E. Crouch, and A. K. Sanyal, “A variational problem on Stiefel manifolds,” Nonlinearity 19 (10), 2247–2276 (2006); arXiv: math/0609038 [math.OC].

    Article  MathSciNet  MATH  Google Scholar 

  5. A. I. Bobenko, B. Lorbeer, and Yu. B. Suris, “Integrable discretizations of the Euler top,” J. Math. Phys. 39 (12), 6668–6683 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution,” Math. USSR, Izv. 38 (1), 69–90 (1992) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 55 (1), 68–92 (1991)].

    Article  MathSciNet  MATH  Google Scholar 

  7. A. V. Bolsinov and B. Jovanović, “Magnetic geodesic flows on coadjoint orbits,” J. Phys. A: Math. Gen. 39, L247–L252 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Dragović and M. Radnović, Poncelet Porisms and Beyond. Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics (Birkhäuser, Basel, 2011), Front. Math.

    MATH  Google Scholar 

  9. Yu. N. Fedorov, “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group \(SO(3)\),” J. Nonlinear Math. Phys. 12 (Suppl. 2), 77–94 (2005); arXiv: nlin/0505045 [nlin.SI].

    MathSciNet  MATH  Google Scholar 

  10. Yu. N. Fedorov and B. Jovanović, “Geodesic flows and Neumann systems on Stiefel varieties: Geometry and integrability,” Math. Z. 270 (3–4), 659–698 (2012); arXiv: 1011.1835 [nlin.SI].

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. N. Fedorov and B. Jovanović, “Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems,”arXiv: 1503.07053 [nlin.SI].

  12. Yu. N. Fedorov and V. V. Kozlov, “Various aspects of \(n\)-dimensional rigid body dynamics,” in Dynamical Systems in Classical Mechanics (Am. Math. Soc., Providence, RI, 1995), AMS Transl., Ser. 2, 168, pp. 141–171.

    MathSciNet  MATH  Google Scholar 

  13. J. Féjoz, A. Knauf, and R. Montgomery, “Lagrangian relations and linear point billiards,” Nonlinearity 30 (4), 1326–1355 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hirota and K. Kimura, “Discretization of the Euler top,” J. Phys. Soc. Japan 69 (3), 627–630 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. R. Jensen, “Einstein metrics on principal fibre bundles,” J. Diff. Geom. 8 (4), 599–614 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Jovanović, “Symmetries and integrability,” Publ. Inst. Math., Nouv. Sér. 84 (98), 1–36 (2008); arXiv: 0812.4398 [math.SG].

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Jovanović, “Billiards on constant curvature spaces and generating functions for systems with constraints,” Theor. Appl. Mech. 44 (1), 103–114 (2017).

    Article  Google Scholar 

  18. B. Jovanović and V. Jovanović, “Virtual billiards in pseudo-Euclidean spaces: Discrete Hamiltonian and contact integrability,” Discrete Contin. Dyn. Syst. A 37 (10), 5163–5190 (2017); arXiv: 1510.04037 [nlin.SI].

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Jovanović and V. Jovanović, “Heisenberg model in pseudo-Euclidean spaces. II,” Regul. Chaotic Dyn. 23 (4), 418–437 (2018); arXiv: 1808.10783 [nlin.SI].

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Kimura, “A Lax pair of the discrete Euler top,” J. Phys. A: Math. Theor. 50 (24), 245203 (2017).

    Article  MathSciNet  Google Scholar 

  21. V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Mosk. Gos. Univ., Moscow, 1991). Engl. transl.: Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Am. Math. Soc., Providence, RI, 1991), Transl. Math. Monogr. 89.

    Book  MATH  Google Scholar 

  22. P. Lancaster and L. Rodman, Algebraic Riccati Equations (Clarendon Press, Oxford, 1995).

    MATH  Google Scholar 

  23. S. V. Manakov, “Note on the integration of Euler’s equations of the dynamics of an \(n\)-dimensional rigid body,” Funct. Anal. Appl. 10 (4), 328–329 (1976) [transl. from Funkts. Anal. Prilozh. 10 (4), 93–94 (1976)].

    MATH  Google Scholar 

  24. A. S. Mishchenko, “Integration of geodesic flows on symmetric spaces,” Math. Notes 31 (2), 132–134 (1982) [transl. from Mat. Zametki 31 (2), 257–262 (1982)].

    Article  MathSciNet  MATH  Google Scholar 

  25. A. S. Mishchenko and A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems,” Funct. Anal. Appl. 12 (2), 113–121 (1978) [transl. from Funkts. Anal. Prilozh. 12 (2), 46–56 (1978)].

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Moser and A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials,” Commun. Math. Phys. 139 (2), 217–243 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen Tien Zung, “Torus actions and integrable systems,” in Topological Methods in the Theory of Integrable Systems, Ed. by A. V. Bolsinov, A. T. Fomenko, and A. A. Oshemkov (Cambridge Sci. Publ., Cambridge, 2006), pp. 289–328; arXiv: math.DS/0407455 [math.DS].

    MathSciNet  MATH  Google Scholar 

  28. M. Petrera and Yu. B. Suris, “On the Hamiltonian structure of Hirota–Kimura discretization of the Euler top,” Math. Nachr. 283 (11), 1654–1663 (2010); arXiv: 0707.4382 [math-ph].

    Article  MathSciNet  MATH  Google Scholar 

  29. J. E. Potter, “Matrix quadratic solutions,” SIAM J. Appl. Math. 14 (3), 496–501 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  30. O. Ragnisco, “A discrete Neumann system,” Phys. Lett. A 167 (2), 165–171 (1992).

    Article  MathSciNet  Google Scholar 

  31. Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Birkhäuser, Basel, 2003), Prog. Math. 219.

    Book  MATH  Google Scholar 

  32. A. A. Tsiganov, “On discretization of the Euler top,” Regul. Chaotic Dyn. 23 (6), 785–796 (2018); arXiv: 1803.06511 [nlin.SI].

    Article  MathSciNet  MATH  Google Scholar 

  33. A. P. Veselov, “Integrable discrete-time systems and difference operators,” Funct. Anal. Appl. 22 (2), 83–93 (1988) [transl. from Funkts. Anal. Prilozh. 22 (2), 1–13 (1988)].

    Article  MathSciNet  MATH  Google Scholar 

  34. A. P. Veselov, “Integrable maps,” Russ. Math. Surv. 46 (5), 1–51 (1991) [transl. from Usp. Mat. Nauk 46 (5), 3–45 (1991)].

    Article  MATH  Google Scholar 

Download references

Funding

The research of B. Jovanović was supported by the Serbian Ministry of Education, Science and Technological Development through the Mathematical Institute of the Serbian Academy of Sciences and Arts. The research of Yu. N. Fedorov was partially funded by the Spanish MINECO-FEDER grants MTM2016-80276-P and PGC2018-098676-B-I00/AEI/FEDER/UE and the provincial grant 2017SGR1049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar Jovanović.

Additional information

To Academician Valery Vasil’evich Kozlov on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, B., Fedorov, Y.N. Discrete Geodesic Flows on Stiefel Manifolds. Proc. Steklov Inst. Math. 310, 163–174 (2020). https://doi.org/10.1134/S0081543820050132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820050132

Keywords

Navigation