Skip to main content
Log in

Polynomial Representations of \(C^*\)-Algebras and their Applications

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

This is a sequel to our paper on nonlinear completely positive maps and dilation theory for real involutive algebras, where we have reduced all classification problems to the passage from a \(C^*\)-algebra \(\mathcal {A}\) to its symmetric powers \(S^n(\mathcal {A})\), resp., to holomorphic representations of the multiplicative \(*\)-semigroup \((\mathcal {A},\cdot )\). Here we study the correspondence between representations of \(\mathcal {A}\) and of \(S^n(\mathcal {A})\) in detail. As \(S^n(\mathcal {A})\) is the fixed point algebra for the natural action of the symmetric group \(S_n\) on \(\mathcal {A}^{\otimes n}\), this is done by relating representations of \(S^n(\mathcal {A})\) to those of the crossed product \(\mathcal {A}^{\otimes n} \rtimes S_n\) in which it is a hereditary subalgebra. For \(C^*\)-algebras of type I, we obtain a rather complete description of the equivalence classes of the irreducible representations of \(S^n(\mathcal {A})\) and we relate this to the Schur–Weyl theory for \(C^*\)-algebras. Finally we show that if \(\mathcal {A}\subseteq B(\mathcal {H})\) is a factor of type II or III, then its corresponding multiplicative representation on \(\mathcal {H}^{\otimes n}\) is a factor representation of the same type, unlike the classical case \(\mathcal {A}=B(\mathcal {H})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias, A., Latrémolière, F.: Irreducible representations of \(C^\ast \)-crossed products by finite groups. J. Raman. Math. Soc. 25(2), 193–231 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Arveson, W.: An Invitation to \(C^*\)-algebras. In: Graduate Texts in Mathematics, vol. 39, Springer, New York (1976)

  3. Aubert, P.-L.: Théorie de Galois pour une \(W^*\)-algèbre. Comment. Math. Helv. 51(3), 411–433 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beltiţă, D., Neeb, K.-H.: Schur–Weyl theory for \(C^*\)-algebras. Math. Nachr. 285(10), 1170–1198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beltiţă, D., Neeb, K.-H.: Nonlinear completely positive maps and dilation theory for real involutive algebras. Integr. Equ. Oper. Theory 83(4), 517–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blackadar, B.: “Operator Algebras,” Encyclopedia of Mathematical Sciences, vol. 122. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Brown, L.G.: Stable isomorphism of hereditary subalgebras of \(C^*\)-algebras. Pacific J. Math. 71(2), 335–348 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corwin, L.: Induced representations of discrete groups. Proc. Am. Math. Soc. 47, 279–287 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daletskii, A., Kalyuzhnyi, A.: Permutations in tensor products of factors, and \(L^2\) cohomology of configuration spaces. Methods Funct. Anal. Topol. 12(4), 341–352 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Dawson, M., Ólafsson, G.: A survey of amenability theory for direct-limit groups. In: Christensen, J.G., Dann, S., Mayeli, A., Ólafsson, G. (eds.) Trends in Harmonic Analysis and its Applications, Contemp. Math., vol. 650, pp. 89–109. American Mathematical Society, Providence (2015)

  11. Dixmier, J.: Les \(C^*\)-algèbres et leurs représentations. Gauthier-Villars, Paris (1964)

    MATH  Google Scholar 

  12. Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann). Deuxième édition, revue et augmentée. Cahiers Scientifiques, Fasc. XXV. Gauthier-Villars Editeur, Paris (1969)

  13. Enomoto, T., Izumi, M.: Indecomposable characters of infinite dimensional groups associated with operator algebras. J. Math. Soc. Jpn. 68(3), 1231–1270 (2016)

  14. Fell, J.M.G., Doran, R .S.: Representations of \(*\)-algebras, locally compact groups, and Banach-\(*\)-algebraic Bundles I, II. Academic Press, Boston (1988)

    MATH  Google Scholar 

  15. Frank, M., Kirchberg, E.: On conditional expectations of finite index. J. Oper. Theory 40(1), 87–111 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Høegh-Krohn, R., Landstad, M .B., Størmer, E.: Compact ergodic groups of automorphisms. Ann. Math. (2) 114(1), 75–86 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, G., Tomiyama, J.: On characterizations of commutativity of \(C^*\)-algebras. Proc. Am. Math. Soc. 131(12), 3845–3849 (2003)

  18. Junge, M., Pisier, G.: Bilinear forms on exact operator spaces and \({B(H) \otimes B(H)}\). Geom. Funct. Anal. 5(2), 329–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras. In: Advanced Theory an Exercise Approach, vol. IV. Special topics. Birkhuser Boston, Inc., Boston (1992)

  20. Kamalov, F.: The dual structure of crossed product \(C^\ast \)-algebras with finite groups. Bull. Aust. Math. Soc. 88(2), 243–249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kamalov, F.: Covariant representations of \(C^*\)-dynamical systems with compact groups. J. Oper. Theory 70(1), 259–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirillov, A.A.: Representation of the infinite dimensional unitary group. Dokl. Akad. Nauk. SSSR 212, 288–290 (1973)

    MathSciNet  Google Scholar 

  23. Landstad, M.B.: Algebras of spherical functions associated with covariant systems over a compact group. Math. Scand. 47(1), 137–149 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loi, PhH: On the theory of index for type III factors. J. Oper. Theory 28(2), 251–265 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Murphy, G .J.: \(C^*\)-algebras and Operator Theory. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  26. Neeb, K.-H.: Unitary representations of unitary groups. In: Mason, G., Penkov, I., Wolf, J.A. (eds.) Developments and retrospectives in Lie theory, Geometric and analytic methods. Developments in Mathematics, vol. 37, pp. 197–243. Springer, Cham (2014)

    Google Scholar 

  27. Neher, E., Savage, A.: A survey of equivariant map algebras with open problems. In: Chari, V., Greenstein, J., Misra, K.C., Raghavan, K.N., Viswanath, S. (eds.) Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemp. Math., vol. 602, pp. 165–182. American Mathematical Society, Providence (2013)

  28. Nessonov, N.I.: Schur–Weyl duality for the unitary groups of II\(_1\)-factors, Preprint. arXiv:1312.0824

  29. Okayasu, T., Takesaki, M.: Dual spaces of tensor products of \(C^{\ast }\)-algebras. Tôhoku Math. J. 18(2), 332–337 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-Trace \(C^*\)-Algebras. Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence (1998)

  31. Rieffel, M.A.: Actions of finite groups on \(C^*\)-algebras. Math. Scand. 47(1), 157–176 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosenberg, J.: Appendix to O. Bratteli’s paper on “Crossed products of UHF algebras by product type actions”. Duke Math. J. 46(1), 25–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sakai, Sh: \(C^*\)-algebras and \(W^*\)-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 60. Springer, New York (1971)

    Google Scholar 

  34. Sakai, Sh: Automorphisms and tensor products of operator algebras. Am. J. Math. 97(4), 889–896 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serre, J.-P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, New York (1977)

  36. Stochel, J.: Decomposition and disintegration of positive definite kernels on convex \(*\)-semigroups. Ann. Polon. Math. 56(3), 243–294 (1992)

    MathSciNet  MATH  Google Scholar 

  37. Strătilă, Ş., Zsidó, L.: Lectures on von Neumann Algebras. Editura Academiei, Bucharest; Abacus Press, Tunbridge Wells (1979)

  38. Takesaki, M.: Covariant representations of \(C^*\)-algebras and their locally compact automorphism groups. Acta Math. 119, 273–303 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  39. Upmeier, H.: Symmetric Banach Manifolds and Jordan \(C^*\)-algebras, North-Holland Mathematics Studies, vol. 104. Notas de Matemática, 96. North-Holland Publishing Co., Amsterdam (1985)

  40. Wolf, J.A.: Principal series representations of infinite dimensional Lie groups, I: Minimal parabolic subgroups. In: Howe, R., Hunziker, M., Willenbring, J.F. (eds.) Symmetry: Representation Theory and its Applications, Progr. Math., vol. 257, pp. 519–538. Birkhäuser/Springer, New York (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Beltiţă.

Additional information

The work of the first-named author was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-0370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltiţă, D., Neeb, KH. Polynomial Representations of \(C^*\)-Algebras and their Applications. Integr. Equ. Oper. Theory 86, 545–578 (2016). https://doi.org/10.1007/s00020-016-2335-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2335-9

Mathematics Subject Classification

Keywords

Navigation