Skip to main content
Log in

On the Existence of L2 Boundary Values of Solutions to an Elliptic Equation

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The behavior of solutions of a second-order elliptic equation near a distinguished piece of the boundary is studied. On the remaining part of the boundary, the solutions are assumed to satisfy the homogeneous Dirichlet conditions. A necessary and sufficient condition is established for the existence of an L2 boundary value on the distinguished part of the boundary. Under the conditions of this criterion, estimates for the nontangential maximal function of the solution hold, the solution belongs to the space of (n − 1)-dimensionally continuous functions, and the boundary value is taken in a much stronger sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. È. R. Andriyanova and F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity,” Sb. Math. 207(1), 1–40 (2016) [transl. from Mat. Sb. 207 (1), 3–44 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  2. O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich, A. K. Gushchin, Yu. N. Drozhzhinov, V. V. Zharinov, and V. P. Mikhailov, “Boundary value problems of mathematical physics,” Proc. Steklov Inst. Math. 175, 65–105 (1988) [transl. from Tr. Mat. Inst. Steklova 175, 67–102 (1986)].

    Google Scholar 

  3. L. Carleson, “An interpolation problem for bounded analytic functions,” Am. J. Math. 80, 921–930 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Carleson, “Interpolations by bounded analytic functions and the corona problem,” Ann. Math., Ser. 2, 76, 547–559 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. De Giorgi, “Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari,” Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., Ser. 3, 3, 25–43 (1957).

    MATH  Google Scholar 

  6. V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation,” Sb. Math. 202(7), 1001–1020 (2011) [transl. from Mat. Sb. 202 (7), 75–94 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations,” Theor. Math. Phys. 180(2), 917–931 (2014) [transl. from Teor. Mat. Fiz. 180 (2), 189–205 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Zh. Dumanyan, “On solvability of the Dirichlet problem with the boundary function in L 2 for a second-order elliptic equation,” J. Contemp. Math. Anal. 50(4), 153–166 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Fatou, “Séries trigonométriques et séries de Taylor,” Acta Math. 30, 335–400 (1906).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation,” Math. USSR, Sb. 65(1), 19–66 (1990) [transl. from Mat. Sb. 137 (1), 19–64 (1988)].

    Article  MathSciNet  MATH  Google Scholar 

  11. A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations,” Sib. Math. J. 46(5), 826–840 (2005) [transl. from Sib. Mat. Zh. 46 (5), 1036–1052 (2005)].

    Article  MathSciNet  Google Scholar 

  12. A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation,” Theor. Math. Phys. 157(3), 1655–1670 (2008) [transl. from Teor. Mat. Fiz. 157 (3), 345–363 (2008)].

    Article  MATH  Google Scholar 

  13. A. K. Gushchin, “Solvability of the Dirichlet problem for a second-order elliptic equation with a boundary function from L p,” Dokl. Math. 83(2), 219–221 (2011) [transl. from Dokl. Akad. Nauk 437 (5), 583–586 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  14. A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an L p boundary function,” Sb. Math. 203(1), 1–27 (2012) [transl. from Mat. Sb. 203 (1), 3–30 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  15. A. K. Guschin, “L p-estimates for solutions of second-order elliptic equation Dirichlet problem,” Theor. Math. Phys. 174(2), 209–219 (2013) [transl. from Teor. Mat. Fiz. 174 (2), 243–255 (2013)].

    Article  MathSciNet  MATH  Google Scholar 

  16. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation,” Sb. Math. 206(10), 1410–1439 (2015) [transl. from Mat. Sb. 206 (10), 71–102 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  17. A. K. Gushchin, “V. A. Steklov’s work on equations of mathematical physics and development of his results in this field,” Proc. Steklov Inst. Math. 289, 134–151 (2015) [transl. from Tr. Mat. Inst. Steklova 289, 145–162 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  18. A. K. Gushchin, “L p-estimates for the nontangential maximal function of the solution to a second-order elliptic equation,” Sb. Math. 207(10), 1384–1409 (2016) [transl. from Mat. Sb. 207 (10), 28–55 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  19. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation,” Sb. Math. 209(6), 823–839 (2018) [transl. from Mat. Sb. 209 (6), 47–64 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  20. A. K. Gushchin, “A criterion for the existence of L p boundary values of solutions to an elliptic equation,” Proc. Steklov Inst. Math. 301, 44–64 (2018) [transl. from Tr. Mat. Inst. Steklova 301, 51–73 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  21. A. K. Gushchin and V. P. Mikhailov, “On boundary values in L p, p > 1, of solutions of elliptic equations,” Math. USSR, Sb. 36(1), 1–19 (1980) [transl. from Mat. Sb. 108 (1), 3–21 (1979)].

    Article  Google Scholar 

  22. A. K. Gushchin and V. P. Mikhailov, “On boundary values of solutions of elliptic equations,” in Generalized Functions and Their Applications in Mathematical Physics: Proc. Int. Conf., Moscow, Nov. 24–28, 1980 (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1981), pp. 189–205.

    Google Scholar 

  23. A. K. Gushchin and V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation,” Math. USSR, Sb. 73(1), 171–194 (1992) [transl. from Mat. Sb. 182 (6), 787–810 (1991)].

    Article  MathSciNet  Google Scholar 

  24. A. K. Gushchin and V. P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation,” Russ. Acad. Sci. Sb. Math. 81(1), 101–136 (1995) [transl. from Mat. Sb. 185 (1), 121–160 (1994)].

    MathSciNet  Google Scholar 

  25. L. Hörmander, “L p estimates for (pluri-) subharmonic functions,” Math. Scand. 20, 65–78 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity,” Proc. Steklov Inst. Math. 290, 138–142 (2015) [transl. from Tr. Mat. Inst. Steklova 290, 149–153 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  27. M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe,” Phys. Usp. 59(7), 689–700 (2016) [transl. from Usp. Fiz. Nauk 186 (7), 763–775 (2016)].

    Article  Google Scholar 

  28. M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections,” Theor. Math. Phys. 191(2), 661–668 (2017) [transl. from Teor. Mat. Fiz. 191 (2), 219–227 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  29. V. A. Kondrat’ev, I. Kopachek, and O. A. Oleinik, “On the best Hölder exponents for generalized solutions of the Dirichlet problem for a second order elliptic equation,” Math. USSR, Sb. 59(1), 113–127 (1988) [transl. from Mat. Sb. 131 (1), 113–125 (1986)].

    Article  MathSciNet  MATH  Google Scholar 

  30. L. M. Kozhevnikova and A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains,” Sb. Math. 206(8), 1123–1149 (2015) [transl. from Mat. Sb. 206 (8), 99–126 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  31. J. E. Littlewood and R. E. A. C. Paley, “Theorems on Fourier series and power series,” J. London Math. Soc. 6, 230–233 (1931).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. E. Littlewood and R. E. A. C. Paley, “Theorems on Fourier series and power series. II,” Proc. London Math. Soc., Ser. 2, 42, 52–89 (1936).

    MathSciNet  MATH  Google Scholar 

  33. J. E. Littlewood and R. E. A. C. Paley, “Theorems on Fourier series and power series. III,” Proc. London Math. Soc., Ser. 2, 43, 105–126 (1937).

    MathSciNet  MATH  Google Scholar 

  34. J. Marcinkiewicz and A. Zygmund, “A theorem of Lusin,” Duke Math. J. 4, 473–485 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. G. Maz’ja, “On a degenerating problem with directional derivative,” Math. USSR, Sb. 16(3), 429–469 (1972) [transl. from Mat. Sb. 87 (3), 417–454 (1972)].

    Article  Google Scholar 

  36. V. P. Mikhailov, “On boundary properties of solutions of elliptic equations,” Sov. Math., Dokl. 17, 274–277 (1976) [transl. from Dokl. Akad. Nauk SSSR 226 (6), 1264–1266 (1976)].

    Google Scholar 

  37. V. P. Mikhailov, “On the boundary values of solutions of elliptic equations in domains with a smooth boundary,” Math. USSR, Sb. 30(2), 143–166 (1976) [transl. from Mat. Sb. 101 (2), 163–188 (1976)].

    Article  MathSciNet  Google Scholar 

  38. V. P. Mikhailov, “Dirichlet’s problem for a second-order elliptic equation,” Diff. Eqns. 12(10), 1320–1329 (1977) [transl. from Diff. Uravn. 12 (10), 1877–1891 (1976)].

    MathSciNet  Google Scholar 

  39. V. P. Mikhailov, “Boundary properties of solutions of elliptic equations,” Mat. Zametki 27(1), 137–145 (1980).

    MathSciNet  Google Scholar 

  40. Yu. A. Mikhailov, “Boundary values in L p, p > 1, of solutions of second-order linear elliptic equations,” Diff. Eqns. 19(2), 243–258 (1983) [transl. from Diff. Uravn. 19 (2), 318–337 (1983)].

    Google Scholar 

  41. J. Nash, “Continuity of solutions of parabolic and elliptic equations,” Am. J. Math. 80, 931–954 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  42. I. M. Petrushko, “On boundary values of solutions of elliptic equations in domains with Lyapunov boundary,” Math. USSR, Sb. 47(1), 43–72 (1984) [transl. from Mat. Sb. 119 (1), 48–77 (1982)].

    Article  MathSciNet  MATH  Google Scholar 

  43. I. M. Petrushko, “On boundary values in L p, p > 1, of solutions of elliptic equations in domains with a Lyapunov boundary,” Math. USSR, Sb. 48(2), 565–585 (1984) [transl. from Mat. Sb. 120 (4), 569–588 (1983)].

    Article  MATH  Google Scholar 

  44. I. I. Privalov, Boundary Properties of Analytic Functions (Gostekhizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  45. F. Riesz, “Uber die Randwerte einer analytischen Funktion,” Math. Z. 18, 87–95 (1923).

    Article  MathSciNet  MATH  Google Scholar 

  46. Ya. A. Roitberg, “On limiting values on surfaces, parallel to the boundary, of generalized solutions of elliptic equations,” Sov. Math., Dokl. 19, 229–233 (1978) [transl. from Dokl. Akad. Nauk SSSR 238 (6), 1303–1306 (1978)].

    MATH  Google Scholar 

  47. E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  48. V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations,” Theor. Math. Phys. 185(2), 1557–1581 (2015) [transl. from Teor. Mat. Fiz. 185 (2), 227–251 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  49. V. V. Zharinov, “Backlund transformations,” Theor. Math. Phys. 189(3), 1681–1692 (2016) [transl. from Teor. Mat. Fiz. 189 (3), 323–334 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  50. V. V. Zharinov, “Lie—Poisson structures over differential algebras,” Theor. Math. Phys. 192(3), 1337–1349 (2017) [transl. from Teor. Mat. Fiz. 192 (3), 459–472 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Zygmund, Trigonometric Series (Cambridge Univ. Press, Cambridge, 1959), Vol. 2.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gushchin.

Additional information

Russian Text © The Author(s), 2019, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Vol. 306, pp. 56–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchin, A.K. On the Existence of L2 Boundary Values of Solutions to an Elliptic Equation. Proc. Steklov Inst. Math. 306, 47–65 (2019). https://doi.org/10.1134/S0081543819050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543819050067

Navigation