Skip to main content
Log in

Hermite—Padé Approximants of the Mittag-Leffler Functions

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The convergence rate of type II Hermite–Padé approximants for a system of degenerate hypergeometric functions {1F1(1, γ; λjz)} k j=1 is found in the case when the numbers {λj} k j=1 are the roots of the equation λk = 1 or real numbers and \(\gamma\in\mathbb{C}\;\backslash\left\{0,-1,-2,...\right\}\). More general statements are obtained for approximants of this type (including nondiagonal ones) in the case of k = 2. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Aptekarev, “Convergence of rational approximations to a set of exponents,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 1, 68–74 (1981) [Moscow Univ. Math. Bull. 36 (1), 81–86 (1981)].

    MATH  Google Scholar 

  2. A. I. Aptekarev, “Padé approximations for the system {1 F 1(1, c; λi z)i=1 k},” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 58–62 (1981) [Moscow Univ. Math. Bull. 36 (2), 73–76 (1981)].

    Google Scholar 

  3. A. I. Aptekarev, A. I. Bogolyubskii, and M. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants,” Mat. Sb. 208 (3), 4–27 (2017) [Sb. Math. 208, 313–334 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  4. A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, and S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials,” Usp. Mat. Nauk 66 (6), 37–122 (2011) [Russ. Math. Surv. 66, 1049–1131 (2011)].

    Article  MATH  Google Scholar 

  5. A. I. Aptekarev, S. A. Denisov, and M. L. Yattselev, “Selfadjoint Jacobi matrices on graphs and multiple orthogonal polynomials,” Preprint No. 3 (Keldysh Inst. Appl. Math., Moscow, 2018).

    Google Scholar 

  6. A. I. Aptekarev and A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles,” Usp. Mat. Nauk 66 (6), 123–190 (2011) [Russ. Math. Surv. 66, 1133–1199 (2011)].

    Article  MATH  Google Scholar 

  7. A. I. Aptekarev and H. Stahl, “Asymptotics of Hermite–Padé polynomials,” in Progress in Approximation Theory: An International Perspective, Ed. by A. A. Gonchar and E. B. Saff (Springer, New York, 1992), Springer Ser. Comput. Math. 19, pp. 127–167.

    Google Scholar 

  8. A. V. Astafyeva and A. P. Starovoitov, “Hermite–Padé approximation of exponential functions,” Mat. Sb. 207 (6), 3–26 (2016) [Sb. Math. 207, 769–791 (2016)].

    Article  MATH  Google Scholar 

  9. G. A. Baker Jr. and P. Graves-Morris, Padé Approximants, Part 1: Basic Theory; Part 2: Extensions and Applications (Addison-Wesley, Reading, MA, 1981).

    MATH  Google Scholar 

  10. D. Braess, “On the conjecture of Meinardus on rational approximation of ex. II,” J. Approx. Theory 40 (4), 375–379 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. I. Buslaev and S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 272–279 (2015) [Proc. Steklov Inst. Math. 290, 256–263 (2015)].

    MATH  Google Scholar 

  12. M. G. de Bruin, “Convergence in the Padé table for 1F1(1; c; x),” Nederl. Akad. Wet., Proc., Ser. A 79, 408–418 (1976).

    MATH  Google Scholar 

  13. M. M. Dzhrbashyan, Integral Transformations and Representations of Functions in the Complex Domain (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  14. C. Hermite, “Sur la fonction exponentielle,” C. R. Acad. Sci. Paris 77, 18–24, 74–79, 226–233, 285–293 (1873).

    MATH  Google Scholar 

  15. F. Klein, Elementarmathematik vom höheren Standpunkte aus, Vol. 1: Arithmetik, Algebra, Analysis (J. Springer, Berlin, 1924); Engl. transl.: Elementary Mathematics from a Higher Standpoint, Vol. 1: Arithmetic, Algebra, Analysis (Springer, Berlin, 2016).

    MATH  Google Scholar 

  16. A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, and S. P. Suetin, “Convergence of Shafer quadratic approximants,” Usp. Mat. Nauk 71 (2), 205–206 (2016) [Russ. Math. Surv. 71, 373–375 (2016)].

    Article  MATH  Google Scholar 

  17. A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface,” Usp. Mat. Nauk 72 (4), 95–130 (2017) [Russ. Math. Surv. 72, 671–706 (2017)].

    Article  MATH  Google Scholar 

  18. A. V. Komlov and S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials,” Usp. Mat. Nauk 70 (6), 211–212 (2015) [Russ. Math. Surv. 70, 1179–1181 (2015)].

    Article  MATH  Google Scholar 

  19. A. Kuijlaars, H. Stahl, W. Van Assche, and F. Wielonsky, “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert,” C. R., Math., Acad. Sci. Paris 336 (11), 893–896 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. B. J. Kuijlaars, H. Stahl, W. Van Assche, and F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function,” J. Comput. Appl. Math. 207 (2), 227–244 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. B. J. Kuijlaars, W. Van Assche, and F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: A Riemann–Hilbert approach,” Constr. Approx. 21 (3), 351–412 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. López Lagomasino, S. Medina Peralta, and U. Fidalgo Prieto, “Hermite–Padé approximation for certain systems of meromorphic functions,” Mat. Sb. 206 (2), 57–76 (2015) [Sb. Math. 206, 225–241 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I, II,” J. Reine Angew. Math. 166, 118–136, 137–150 (1931, 1932).

    MathSciNet  MATH  Google Scholar 

  24. G. Mittag-Leffler, “Sur la nouvelle fonction Ea(x),” C. R. Acad. Sci. Paris 137, 554–558 (1903).

    MATH  Google Scholar 

  25. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988; Am. Math. Soc., Providence, RI, 1991).

    Book  MATH  Google Scholar 

  26. O. Perron, Die Lehre von den Kettenbrüchen (Teubner, Leipzig, 1929).

    MATH  Google Scholar 

  27. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  28. H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function,” Electron. Trans. Numer. Anal. 14, 195–222 (2002).

    MathSciNet  MATH  Google Scholar 

  29. H. Stahl, “Quadratic Hermite–Padé polynomials associated with the exponential function,” J. Approx. Theory 125 (2), 238–294 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Stahl, “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function,” Constr. Approx. 23 (2), 121–164 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. P. Starovoitov, “Hermitian approximation of two exponential functions,” Izv. Saratov. Univ., Mat. Mekh. Inf. 13 (1(2)), 87–91 (2013).

    MATH  Google Scholar 

  32. A. P. Starovoitov, “On the properties of Hermite–Padé approximants to the system of Mittag-Leffler functions,” Dokl. Nats. Akad. Nauk Belarusi 57 (1), 5–10 (2013).

    MathSciNet  MATH  Google Scholar 

  33. A. P. Starovoitov, “Hermite–Padé approximants to the system of Mittag-Leffler functions,” Probl. Fiz. Mat. Tekh., No. 1, 81–87 (2013).

    MATH  Google Scholar 

  34. A. P. Starovoitov, “The asymptotic form of the Hermite–Padé approximations for a system of Mittag-Leffler functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 59–68 (2014) [Russ. Math. 58 (9), 49–56 (2014)].

    MATH  Google Scholar 

  35. A. P. Starovoitov, “Asymptotics of diagonal Hermite–Padé polynomials for the collection of exponential functions,” Mat. Zametki 102 (2), 302–315 (2017) [Math. Notes 102, 277–288 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  36. A. P. Starovoitov and E. P. Kechko, “Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions,” Mat. Zametki 99 (3), 409–420 (2016) [Math. Notes 99, 417–425 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  37. A. P. Starovoitov and E. P. Kechko, “On some properties of Hermite–Padé approximants to an exponential system,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 298, 338–355 (2017) [Proc. Steklov Inst. Math. 298, 317–333 (2017)].

    MATH  Google Scholar 

  38. A. P. Starovoitov and N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions,” Mat. Sb. 198 (7), 109–122 (2007) [Sb. Math. 198, 1011–1023 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  39. S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series,” Usp. Mat. Nauk 57 (1), 45–142 (2002) [Russ. Math. Surv. 57, 43–141 (2002)].

    Article  Google Scholar 

  40. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation,” Usp. Mat. Nauk 70 (5), 121–174 (2015) [Russ. Math. Surv. 70, 901–951 (2015)].

    Article  MATH  Google Scholar 

  41. W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence,” in Continued Fractions: From Analytic Number Theory to Constructive Approximation: Proc. Conf. Univ. Missouri, 1998 (Am. Math. Soc., Providence, RI, 1999), Contemp. Math. 236, pp. 325–342.

    Chapter  Google Scholar 

  42. H. van Rossum, “Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table. I, II, III,” Nederl. Akad.Wet., Proc., Ser. A 58, 517–525, 526–534, 675–682 (1955).

    MATH  Google Scholar 

  43. F. Wielonsky, “Asymptotics of diagonal Hermite–Padé approximants to ez,” J. Approx. Theory 90 (2), 283–298 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. L. Yattselev, “Strong asymptotics of Hermite–Padé approximants for Angelesco systems,” Can. J. Math. 68 (5), 1159–1201 (2016).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Starovoitov.

Additional information

Original Russian Text © A.P. Starovoitov, 2018, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 301, pp. 241–258.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starovoitov, A.P. Hermite—Padé Approximants of the Mittag-Leffler Functions. Proc. Steklov Inst. Math. 301, 228–244 (2018). https://doi.org/10.1134/S0081543818040181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818040181

Navigation