Skip to main content
Log in

On first integrals of geodesic flows on a two-torus

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

For a geodesic (or magnetic geodesic) flow, the problem of the existence of an additional (independent of the energy) first integral that is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Agapov, “On the integrable magnetic geodesic flow on a 2-torus,” Sib. Elektron. Mat. Izv. 12, 868–873 (2015).

    MATH  Google Scholar 

  2. S. V. Agapov, M. Bialy, and A. E. Mironov, “Integrable magnetic geodesic flows on 2-torus: New example via quasi-linear system of PDEs,” arXiv: 1605.04234 [math.DS].

  3. V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer, New York, 1989), Grad. Texts Math.60.

    Book  MATH  Google Scholar 

  4. I. K. Babenko and N. N. Nekhoroshev, “On complex structures on two-dimensional tori admitting metrics with nontrivial quadratic integral,” Mat. Zametki 58(5), 643–652 (1995) [Math. Notes 58, 1129–1135 (1995)].

    MathSciNet  MATH  Google Scholar 

  5. M. V. Bialy, “First integrals that are polynomial in momenta for a mechanical system on a two-dimensional torus,” Funkts. Anal. Prilozh. 21(4), 64–65 (1987) [Funct. Anal. Appl. 21, 310–312 (1987)].

    MathSciNet  Google Scholar 

  6. M. Bialy and A. E. Mironov, “Rich quasi-linear system for integrable geodesic flows on 2-torus,” Discrete Contin. Dyn. Syst. A 29(1), 81–90 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bialy and A. Mironov, “New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces,” Cent. Eur. J. Math. 10(5), 1596–1604 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bialy and A. E. Mironov, “Integrable geodesic flows on 2-torus: Formal solutions and variational principle,” J. Geom. Phys. 87, 39–47 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. D. Birkhoff, Dynamical Systems (Am. Math. Soc., New York, 1927), Colloq. Publ.9.

    Book  MATH  Google Scholar 

  10. S. V. Bolotin, “First integrals of systems with gyroscopic forces,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 75–82 (1984) [Moscow Univ. Mech. Bull. 39(6), 20–28 (1984)].

    MathSciNet  MATH  Google Scholar 

  11. A. V. Bolsinov and B. Jovanović, “Magnetic geodesic flows on coadjoint orbits,” J. Phys. A: Math. Gen. 39 (16), L247–L252 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Bolsinov and B. Jovanović, “Magnetic flows on homogeneous spaces,” Comment. Math. Helv. 83(3), 679–700 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Bolsinov, V. V. Kozlov, and A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body,” Usp. Mat. Nauk 50(3), 3–32 (1995) [Russ. Math. Surv. 50, 473–501 (1995)].

    MathSciNet  MATH  Google Scholar 

  14. E. Bour, “Sur l’intégration des équations différentielles partielles du premier et du second ordre,” J. Éc. Polytech. 22, 149–191 (1862).

    Google Scholar 

  15. G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal (Gauthier-Villars, Paris, 1894), Part3.

    MATH  Google Scholar 

  16. N. V. Denisova and V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space,” Mat. Sb. 191(2), 43–63 (2000) [Sb. Math. 191, 189–208 (2000)].

    Article  MathSciNet  MATH  Google Scholar 

  17. N. V. Denisova, V. V. Kozlov, and D. V. Treschev, “Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space,” Izv. Ross. Akad. Nauk, Ser. Mat. 76(5), 57–72 (2012) [Izv. Math. 76, 907–921 (2012)].

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Dorizzi, B. Grammaticos, A. Ramani, and P. Winternitz, “Integrable Hamiltonian systems with velocitydependent potentials,” J. Math. Phys. 26, 3070–3079 (1985).

    Article  MathSciNet  Google Scholar 

  19. D. I. Efimov, “The magnetic geodesic flow in a homogeneous field on the complex projective space,” Sib. Mat. Zh. 45(3), 566–576 (2004) [Sib. Math. J. 45, 465–474 (2004)].

    Article  MathSciNet  MATH  Google Scholar 

  20. D. I. Efimov, “The magnetic geodesic flow on a homogeneous symplectic manifold,” Sib. Mat. Zh. 46(1), 106–118 (2005) [Sib. Math. J. 46, 83–93 (2005)].

    Article  MathSciNet  MATH  Google Scholar 

  21. V. N. Kolokol’tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities,” Izv. Akad. Nauk SSSR, Ser. Mat. 46(5), 994–1010 (1982) [Math. USSR, Izv. 21(2), 291–306 (1983)].

    MathSciNet  MATH  Google Scholar 

  22. V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems,” Dokl. Akad. Nauk SSSR 249(6), 1299–1302 (1979) [Sov. Math., Dokl. 20, 1413–1415 (1979)].

    MathSciNet  MATH  Google Scholar 

  23. V. V. Kozlov and N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus,” Mat. Sb. 185(12), 49–64 (1994) [Sb. Math. 83(2), 469–481 (1995)].

    MATH  Google Scholar 

  24. J. Liouville, “Sur quelques cas particuliers o`u les équations du mouvement d’un point matériel peuvent s’intégrer,” J. Math. Pures Appl. 11, 345–378 (1846).

    Google Scholar 

  25. F. Massieu, “Sur les intégrales algébriques des problèmes de mécanique,” Thèse Doct. Sci. Math. (Mallet-Bachelier, Paris, 1861).

    Google Scholar 

  26. V. S. Matveev and V. V. Shevchishin, “Differential invariants for cubic integrals of geodesic flows on surfaces,” J. Geom. Phys. 60(6–8), 833–856 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus,” Izv. Ross. Akad. Nauk, Ser. Mat. 74(4), 145–156 (2010) [Izv. Math. 74, 805–817 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  28. S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory,” Usp. Mat. Nauk 37(5), 3–49 (1982) [Russ. Math. Surv. 37(5), 1–56 (1982)].

    MathSciNet  Google Scholar 

  29. S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields (Am. Math. Soc., Providence, RI, 2006), Grad. Stud. Math.71.

    Book  MATH  Google Scholar 

  30. M. V. Pavlov and S. P. Tsarev, “On local description of two-dimensional geodesic flows with a polynomial first integral,” arXiv: 1509.03084 [nlin.SI].

  31. V. A. Sharafutdinov, “Killing tensor fields on the 2-torus,” Sib. Mat. Zh. 57(1), 199–221 (2016) [Sib. Math. J. 55, 155–173 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  32. I. A. Taimanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds,” Izv. Akad. Nauk SSSR, Ser. Mat. 51(2), 429–435 (1987) [Math. USSR, Izv. 30(2), 403–409 (1988)].

    Google Scholar 

  33. I. A. Taimanov, “On topological properties of integrable geodesic flows,” Mat. Zametki 44(2), 283–284 (1988).

    MathSciNet  MATH  Google Scholar 

  34. I. A. Taimanov, “An example of jump from chaos to integrability in magnetic geodesic flows,” Mat. Zametki 76(4), 632–634 (2004) [Math. Notes 76, 587–589 (2004)].

    Article  Google Scholar 

  35. I. A. Taimanov, “On an integrable magnetic geodesic flow on the two-torus,” Regul. Chaotic Dyn. 20(6), 667–678 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  36. A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations,” Dokl. Akad. Nauk SSSR 279(1), 20–24 (1984) [Sov. Math., Dokl. 30, 588–591 (1984)].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Taimanov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 241–260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimanov, I.A. On first integrals of geodesic flows on a two-torus. Proc. Steklov Inst. Math. 295, 225–242 (2016). https://doi.org/10.1134/S0081543816080150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080150

Navigation