Skip to main content
Log in

On an integrable magnetic geodesic flow on the two-torus

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The magnetic geodesic flow on a flat two-torus with the magnetic field F = cos(x)dxdy is completely integrated and the description of all contractible periodic magnetic geodesics is given. It is shown that there are no such geodesics for energy E ≥ 1/2, for E < 1/2 simple periodic magnetic geodesics form two S 1-families for which the (fixed energy) action functional is positive and therefore there are no periodic magnetic geodesics for which the action functional is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo, A., Lectures on the Free Period Lagrangian Action Functional, J. Fixed Point Theory Appl., 2013, vol. 13, no. 2, pp. 397–430.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbondandolo, A., Macarini, L., and Paternain, G.P., On the Existence of Three Closed Magnetic Geodesics for Subcritical Energies, Comment. Math. Helv., 2015, vol. 90, no. 1, pp. 155–193.

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbondandolo, A., Macarini, L., Mazucchelli, M., and Paternain, G.P., Infinitely Many Periodic Orbits of Exact Magnetic Flows on Surfaces for Almost Every Subcritical Energy Level, arXiv:1404.7641 (2014).

    Google Scholar 

  4. Asselle, L. and Benedetti, G., Infinitely Many Periodic Orbits of Non-Exact Oscillating Magnetic Fields on Surfaces with Genus at Least Two for Almost Every Low Energy Level, Calc. Var. Partial Differential Equations, 2015, vol. 54, no. 2, pp. 1525–1545.

    Article  MathSciNet  Google Scholar 

  5. Bahri, A. and Taimanov, I.A., Periodic Orbits in Magnetic Fields and Ricci Curvature of Lagrangian Systems, Trans. Amer. Math. Soc., 1998, vol. 350, no. 7, pp. 2697–2717.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bangert, V. and Long, Y., The Existence of Two Closed Geodesics on Every Finsler 2-Sphere, Math. Ann., 2010, vol. 346, no. 2, pp. 335–366.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bateman, H. and Erdélyi, A., Higher Transcendental Functions: Vol. 2, New York: McGraw-Hill, 1953.

    Google Scholar 

  8. Benedetti, G. and Zehmisch, K., On the Existence of Periodic Orbits for Magnetic Systems on the Two-Sphere, J. Mod. Dyn., 2015, vol. 9, no. 01, pp. 141–146.

    Article  MathSciNet  Google Scholar 

  9. Benedetti, G., Magnetic Katok Examples on the Two-Sphere, arXiv:1507.05341 (2015).

    Google Scholar 

  10. Branding, V. and Hanisch, F., Magnetic Geodesics via the Heat Flow, arXiv:1411.6848 (2015).

    Google Scholar 

  11. Contreras, G., Macarini, L., and Paternain, G.P., Periodic Orbits for Exact Magnetic Flows on Surfaces, Int. Math. Res. Not., 2004, no. 8, pp. 361–387.

    Article  MathSciNet  Google Scholar 

  12. Contreras, G., The Palais — Smale Condition on Contact Type Energy Levels for Convex Lagrangian Systems, Calc. Var. Partial Differential Equations, 2006, vol. 27, no. 3, pp. 321–395.

    Article  MathSciNet  MATH  Google Scholar 

  13. Frauenfelder, U. and Schlenk, F., Hamiltonian Dynamics on Convex Symplectic Manifolds, Israel J. Math., 2007, vol. 159, pp. 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ginzburg, V. L., New Generalizations of Poincaré’sGeometric Theorem, Funct. Anal. Appl., 1987, vol. 21, no. 2, pp. 100–106; see also: Funktsional. Anal. i Prilozhen., 1987, vol. 21, no. 2, pp. 16–22.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ginzburg, V. L., On the Existence and Non-Existence of Closed Trajectories for Some Hamiltonian Flows, Math. Z., 1996, vol. 223, no. 3, pp. 397–409.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ginzburg, V. and Gürel, B., Periodic Orbits of Twisted Geodesic Flows and the Weinstein–Moser Theorem, Comment. Math. Helv., 2009, vol. l84, no. 4, pp. 865–907.

    Article  Google Scholar 

  17. Kozlov, V.V., Calculus of Variations in the Large and Classical Mechanics, Russian Math. Surveys, 1985, vol. 40, no. 2, pp. 37–71; see also: Uspekhi Mat. Nauk, 1985, vol. 40, no. 2(242), pp. 33–60.

    Article  MATH  Google Scholar 

  18. Novikov, S.P. and Shmel’tser, I., Periodic Solutions of Kirchhoff’s Equations for the Free Motion of a Rigid Body in a Fluid and the Extended Theory of Lyusternik — Shnirel’man–Morse (LSM): 1, Funct. Anal. Appl., 1981, vol. 15, no. 3, pp. 197–207; see also: Funktsional. Anal. i Prilozhen., 1981, vol. 15, no. 3, pp. 54–66.

    Article  MathSciNet  Google Scholar 

  19. Novikov, S.P., Variational Methods and Periodic Solutions of Kirchhoff Type Equations: 2, Funct. Anal. Appl., 1981, vol. 15, no. 4, pp. 263–274; see also: Funktsional. Anal. i Prilozhen., 1981, vol. 15, no. 4, pp. 37–52.

    Article  Google Scholar 

  20. Novikov, S.P., The Hamiltonian Formalism and a Many-Valued Analogue of Morse Theory, Russian Math. Surveys, 1982, vol. 37, no. 5, pp. 1–56; see also: Uspekhi Mat. Nauk, 1982, vol. 37, no. 5(227), pp. 3–49.

    Article  MATH  Google Scholar 

  21. Novikov, S.P. and Taimanov, I.A., Periodic Extremals of Multivalued or Not Everywhere Positive Functionals, Sov. Math. Dokl., 1984, vol. 29, pp. 18–20 see also: Dokl. Akad. Nauk, 1984, vol. 274, no. 1, pp. 26–28.

    MATH  Google Scholar 

  22. Schneider, M., Closed Magnetic Geodesics on S 2, J. Differential Geom., 2011, vol. 87, no. 2, pp. 343–388.

    MathSciNet  MATH  Google Scholar 

  23. Taimanov, I.A., The Principle of Throwing Out Cycles in Morse–Novikov Theory, Sov. Math. Dokl., 1983, vol. 27, pp. 43–46; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 268, no. 1, pp. 46–50.

    Google Scholar 

  24. Taimanov, I.A., Closed Extremals on Two-DimensionalManifolds, Russian Math. Surveys, 1992, vol. 47, no. 2, pp. 163–211; see also: Uspekhi Mat. Nauk, 1992, vol. 47, no. 2(284), pp. 143–185.

    Article  MathSciNet  Google Scholar 

  25. Taimanov, I.A., Nonselfintersecting Closed Extremals of Multivalued or Not Everywhere Positive Functionals, Math. USSR–Izv., 1992, vol. 38, no. 2, pp. 359–374; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1991, vol. 55, no. 2, pp. 367–383.

    MathSciNet  Google Scholar 

  26. Taimanov, I.A., Closed Non-Self-Intersecting Extremals of Multivalued Functionals, Siberian Math. J., 1992, vol. 33, no. 4, pp. 686–692; see also: Sibirsk. Mat. Zh., 1992, vol. 33, no. 4, pp. 155–162.

    Article  MathSciNet  Google Scholar 

  27. Taimanov, I.A., Periodic Magnetic Geodesics on Almost Every Energy Level via Variational Methods, Regul. Chaotic Dyn., 2010, vol. 15, nos. 4–5, pp. 598–605.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander A. Taimanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimanov, I.A. On an integrable magnetic geodesic flow on the two-torus. Regul. Chaot. Dyn. 20, 667–678 (2015). https://doi.org/10.1134/S1560354715060039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715060039

MSC2010 numbers

Keywords

Navigation