Skip to main content
Log in

Integrable and non-integrable structures in Einstein-Maxwell equations with Abelian isometry group G 2

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the classes of electrovacuum Einstein–Maxwell fields (with a cosmological constant) for which the metrics admit an Abelian two-dimensional isometry group G 2 with nonnull orbits and electromagnetic fields possess the same symmetry. For the fields with such symmetries, we describe the structures of the so-called non-dynamical degrees of freedom, whose presence, just as the presence of a cosmological constant, changes (in a strikingly similar way) the vacuum and electrovacuum dynamical equations and destroys their well-known integrable structures. We find modifications of the known reduced forms of Einstein–Maxwell equations, namely, the Ernst equations and the self-dual Kinnersley equations, in which the presence of non-dynamical degrees of freedom is taken into account, and consider the following subclasses of fields with different non-dynamical degrees of freedom: (i) vacuum metrics with cosmological constant; (ii) space–time geometries in vacuum with isometry groups G 2 that are not orthogonally transitive; and (iii) electrovacuum fields with more general structures of electromagnetic fields than in the known integrable cases. For each of these classes of fields, in the case when the two-dimensional metrics on the orbits of the isometry group G 2 are diagonal, all field equations can be reduced to one nonlinear equation for one real function α(x1, x2) that characterizes the area element on these orbits. Simple examples of solutions for each of these classes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Aleksejev, “Soliton configurations of Einstein–Maxwell fields,” in 9th Int. Conf. on General Relativity and Gravitation: Abstr. Contrib. Pap., Friedrich Schiller Univ., Jena, 1980, Vol. 1, pp. 2–3.

    Google Scholar 

  2. G. A. Alekseev, “N-soliton solutions of Einstein–Maxwell equations,” Pis’ma Zh. Eksp. Teor. Fiz. 32(4), 301–303 (1980) [JETP Lett. 32, 277–279 (1980)].

    Google Scholar 

  3. G. A. Alekseev, “On soliton solutions of the Einstein equations in a vacuum,” Dokl. Akad. Nauk SSSR 256(4), 827–830 (1981) [Sov. Phys., Dokl. 26(2), 158–160 (1981)].

    MathSciNet  Google Scholar 

  4. G. A. Alekseev, “Soliton configurations of interacting massless fields,” Dokl. Akad. Nauk SSSR 268(6), 1347–1351 (1983) [Sov. Phys., Dokl. 28(2), 133–135 (1983)].

    MathSciNet  Google Scholar 

  5. G. A. Alekseev, “The method of the inverse problem of scattering and the singular integral equations for interacting massless fields,” Dokl. Akad. Nauk SSSR 283(3), 577–582 (1985) [Sov. Phys., Dokl. 30(7), 565–568 (1985)].

    MathSciNet  Google Scholar 

  6. G. A. Alekseev, “Exact solutions in the general theory of relativity,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 176, 211–258 (1987) [Proc. Steklov Inst. Math. 176, 215–262 (1988)].

    MathSciNet  MATH  Google Scholar 

  7. G. A. Alekseev, “Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters,” in 13th Int. Conf. on General Relativity and Gravitation: Abstr. Contrib. Pap., Huerta Grande, Cordoba, Argentina, 1992, Ed. by P.W. Lamberty and O. E. Ortiz, pp. 3–4.

    Google Scholar 

  8. G. A. Alekseev, “Gravitational solitons and monodromy transform approach to solution of integrable reductions of Einstein equations,” Physica D 152–153, 97–103 (2001); arXiv: gr-qc/0001012.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. A. Alekseev, “Thirty years of studies of integrable reductions of Einstein’s field equations,” in Proc. Twelfth Marcel Grossmann Meeting on General Relativity, Part A: Plenary and Review Talks, Ed. by T. Damour, R. T. Jantzen, and R. Ruffini (World Scientific, New Jersey, 2012), pp. 645–666; arXiv: 1011.3846v1 [gr-qc].

    Chapter  Google Scholar 

  10. G. A. Alekseev, “Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions,” Phys. Rev. D 88 (2), 021503(R) (2013); arXiv: 1205.6238v1 [hep-th].

    Google Scholar 

  11. G. Alekseev, “Travelling waves in expanding spatially homogeneous space–times,” Class. Quantum Grav. 32(7), 075009 (2015); arXiv: 1411.3023v1 [gr-qc].

    Article  MathSciNet  MATH  Google Scholar 

  12. G. A. Alekseev, “Collision of strong gravitational and electromagnetic waves in the expanding universe,” Phys. Rev. D 93 (6), 061501(R) (2016); arXiv: 1511.03335v2 [gr-qc].

    Google Scholar 

  13. G. A. Alekseev and V. A. Belinski, “Equilibrium configurations of two charged masses in general relativity,” Phys. Rev. D 76 (2), 021501(R) (2007); arXiv: 0706.1981v1 [gr-qc].

    Google Scholar 

  14. G. A. Alekseev and A. A. Garcia, “Schwarzschild black hole immersed in a homogeneous electromagnetic field,” Phys. Rev. D 53(4), 1853–1867 (1996).

    Article  MathSciNet  Google Scholar 

  15. V. A. Belinskii and V. E. Zakharov, “Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions,” Zh. Eksp. Teor. Fiz. 75(6), 1953–1971 (1978) [Sov. Phys., JETP 48(6), 985–994 (1978)].

    MathSciNet  Google Scholar 

  16. V. A. Belinskii and V. E. Zakharov, “Stationary gravitational solitons with axial symmetry,” Zh. Eksp. Teor. Fiz. 77(1), 3–19 (1979) [Sov. Phys., JETP 50(1), 1–9 (1979)].

    MathSciNet  Google Scholar 

  17. B. Carter, “Black hole equilibrium states,” in Black Holes: Les Houches 1972, Ed. by C. DeWitt and B. S. DeWitt (Gordon and Breach, New York, 1973), pp. 57–214.

    Google Scholar 

  18. F. J. Ernst, “New formulation of the axially symmetric gravitational field problem,” Phys. Rev. 167(5), 1175–1178 (1968).

    Article  Google Scholar 

  19. B. Gaffet, “The Einstein equations with two commuting Killing vectors,” Class. Quantum Grav. 7(11), 2017–2044 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Geroch, “A method for generating new solutions of Einstein’s equation. II,” J. Math. Phys. 13(3), 394–404 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Gourgoulhon and S. Bonazzola, “Noncircular axisymmetric stationary spacetimes,” Phys. Rev. D 48(6), 2635–2652 (1993).

    Article  MathSciNet  Google Scholar 

  22. J. B. Griffiths and J. Podolský, Exact Space–Times in Einstein’s General Relativity (Cambridge Univ. Press, Cambridge, 2009), Cambridge Monogr. Math. Phys.

    Book  MATH  Google Scholar 

  23. I. Hauser and F. J. Ernst, “Integral equation method for effecting Kinnersley–Chitre transformations,” Phys. Rev. D 20(2), 362–369 (1979).

    Article  MathSciNet  Google Scholar 

  24. I. Hauser and F. J. Ernst, “Integral equation method for effecting Kinnersley–Chitre transformations. II,” Phys. Rev. D 20(8), 1783–1790 (1979).

    Article  MathSciNet  Google Scholar 

  25. I. Hauser and F. J. Ernst, “On the transformation of one electrovac spacetime into another,” in 9th Int. Conf. on General Relativity and Gravitation: Abstr. Contrib. Pap., Friedrich Schiller Univ., Jena, 1980, Vol. 1, pp. 84–85.

    Google Scholar 

  26. W. Kinnersley, “Generation of stationary Einstein–Maxwell fields,” J. Math. Phys. 14(5), 651–653 (1973).

    Article  MathSciNet  Google Scholar 

  27. W. Kinnersley, “Symmetries of the stationary Einstein–Maxwell field equations. I,” J. Math. Phys. 18(8), 1529–1537 (1977).

    Article  Google Scholar 

  28. W. Kinnersley and D. M. Chitre, “Symmetries of the stationary Einstein–Maxwell field equations. II,” J. Math. Phys. 18(8), 1538–1542 (1977).

    Article  Google Scholar 

  29. W. Kinnersley and D. M. Chitre, “Symmetries of the stationary Einstein–Maxwell field equations. III,” J. Math. Phys. 19(9), 1926–1931 (1978).

    Article  Google Scholar 

  30. W. Kinnersley and D. M. Chitre, “Symmetries of the stationary Einstein–Maxwell field equations. IV: Transformations which preserve asymptotic flatness,” J. Math. Phys. 19(10), 2037–2042 (1978).

    Article  Google Scholar 

  31. T. Lewis, “Some special solutions of the equations of axially symmetric gravitational fields,” Proc. R. Soc. London A 136, 176–192 (1932).

    Article  MATH  Google Scholar 

  32. D. Maison, “Are the stationary, axially symmetric Einstein equations completely integrable?,” Phys. Rev. Lett. 41(8), 521–522 (1978).

    Article  MathSciNet  Google Scholar 

  33. A. Papapetrou, “Champs gravitationnels stationnaires `a symétrie axiale,” Ann. Inst. Henri Poincaré, Phys. Théor. 4(2), 83–105 (1966).

    MATH  Google Scholar 

  34. N. R. Sibgatullin, Oscillations and Waves in Strong Gravitational and Electromagnetic Fields (Nauka, Moscow, 1984; Springer, Berlin, 1991).

    MATH  Google Scholar 

  35. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd ed. (Cambridge Univ. Press, Cambridge, 2009).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Alekseev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 295, pp. 7–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, G.A. Integrable and non-integrable structures in Einstein-Maxwell equations with Abelian isometry group G 2 . Proc. Steklov Inst. Math. 295, 1–26 (2016). https://doi.org/10.1134/S0081543816080010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816080010

Navigation