Skip to main content
Log in

Geometry of compact complex manifolds with maximal torus action

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study the geometry of compact complex manifolds M equipped with a maximal action of a torus T = (S 1)k. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan Σ and a complex subgroup HT = (ℂ*)k. On every manifold M we define a canonical holomorphic foliation F and, under additional restrictions on the combinatorial data, construct a transverse Kähler form ω F . As an application of these constructions, we extend some results on the geometry of moment-angle manifolds to the case of manifolds M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Danilov, “The geometry of toric varieties,” Usp. Mat. Nauk 33(2), 85–134 (1978) [Russ. Math. Surv. 33 (2), 97–154 (1978)].

    MathSciNet  Google Scholar 

  2. W. Fulton, Introduction to Toric Varieties (Princeton Univ. Press, Princeton, NJ, 1993).

    MATH  Google Scholar 

  3. D. A. Cox, “The homogeneous coordinate ring of a toric variety,” J. Algebr. Geom. 4, 17–50 (1995).

    MATH  Google Scholar 

  4. R. P. Stanley, “The number of faces of a simplicial convex polytope,” Adv. Math. 35, 236–238 (1980).

    Article  MATH  Google Scholar 

  5. J. E. Pommersheim, “Toric varieties, lattice points and Dedekind sums,” Math. Ann. 295, 1–24 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. C. Leung and V. Reiner, “The signature of a toric variety,” Duke Math. J. 111(2), 253–286 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Meersseman, “A new geometric construction of compact complex manifolds in any dimension,” Math. Ann. 317(1), 79–115 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bosio and L. Meersseman, “Real quadrics in ℂn, complex manifolds and convex polytopes,” Acta Math. 197(1), 53–127 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Tambour, “LVMB manifolds and simplicial spheres,” Ann. Inst. Fourier 62(4), 1289–1317 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Meersseman and A. Verjovsky, “Holomorphic principal bundles over projective toric varieties,” J. Reine Angew. Math. 572, 57–96 (2004).

    MathSciNet  MATH  Google Scholar 

  11. T. Panov, Yu. Ustinovsky, and M. Verbitsky, “Complex geometry of moment-angle manifolds,” arXiv: 1308.2818 [math.CV].

  12. F. Battaglia and D. Zaffran, “Foliations modelling nonrational simplicial toric varieties,” arXiv: 1108.1637 [math.CV].

  13. T. Panov and Yu. Ustinovsky, “Complex-analytic structures on moment-angle manifolds,” Moscow Math. J. 12(1), 149–172 (2012).

    MathSciNet  MATH  Google Scholar 

  14. H. Ishida, “Complex manifolds with maximal torus actions,” arXiv: 1302.0633 [math.CV].

  15. G. E. Bredon, Introduction to Compact Transformation Groups (Academic, New York, 1972).

    MATH  Google Scholar 

  16. T. Delzant, “Hamiltoniens périodiques et images convexes de l’application moment,” Bull. Soc. Math. France 116(3), 315–339 (1988).

    MathSciNet  MATH  Google Scholar 

  17. V. M. Buchstaber and T. E. Panov, Torus Actions in Topology and Combinatorics (MTsNMO, Moscow, 2004) [in Russian].

    Google Scholar 

  18. J.-P. Demailly, “Complex analytic and differential geometry,” http://www-fourier.ujf-grenoble.fr/demailly/documents.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Ustinovsky.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Vol. 286, pp. 219–230.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinovsky, Y.M. Geometry of compact complex manifolds with maximal torus action. Proc. Steklov Inst. Math. 286, 198–208 (2014). https://doi.org/10.1134/S0081543814060108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543814060108

Keywords

Navigation