Skip to main content
Log in

Buchstaber invariant theory of simplicial complexes and convex polytopes

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The survey is devoted to the theory of a combinatorial invariant of simple convex polytopes and simplicial complexes that was introduced by V.M. Buchstaber on the basis of constructions of toric topology. We describe methods for calculating this invariant and its relation to other classical and modern combinatorial invariants and constructions, calculate the invariant for special classes of polytopes and simplicial complexes, and find a criterion for this invariant to be equal to a given small number. We also describe a relation to matroid theory, which allows one to apply the results of this theory to the description of the real Buchstaber number in terms of subcomplexes of the Alexander dual simplicial complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ayzenberg, “f-Vectors and Buchstaber number of simplicial complexes,” Graduate Thesis (Moscow State Univ., Moscow, 2009).

    Google Scholar 

  2. A. A. Ayzenberg, “Connection between Buchstaber invariants and generalized chromatic numbers,” Dal’nevost. Mat. Zh. 11(2), 113–139 (2011).

    Google Scholar 

  3. A. A. Ayzenberg and V. M. Buchstaber, “Nerve complexes and moment-angle spaces of convex polytopes,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 275, 22–54 (2011) [Proc. Steklov Inst. Math. 275, 15–46 (2011)].

    Google Scholar 

  4. A. D. Aleksandrov, Selected Works, Vol. 2: Convex Polyhedra (Nauka, Novosibirsk, 2007); Engl. transl.: A. D. Alexandrov, Convex Polyhedra (Springer, Berlin, 2005).

    Google Scholar 

  5. V. M. Buchstaber, “Ring of simple polytopes and differential equations,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 263, 18–43 (2008) [Proc. Steklov Inst. Math. 263, 13–37 (2008)].

    Google Scholar 

  6. V. M. Buchstaber and V. D. Volodin, “Sharp upper and lower bounds for nestohedra,” Izv. Ross. Akad. Nauk, Ser. Mat. 75(6), 17–46 (2011) [Izv. Math. 75, 1107–1133 (2011)].

    Article  MathSciNet  Google Scholar 

  7. V. M. Buchstaber and N. Yu. Erokhovets, “Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions,” Usp. Mat. Nauk 66(2), 67–162 (2011) [Russ. Math. Surv. 66, 271–367 (2011)].

    Article  Google Scholar 

  8. V. M. Buchstaber and T. E. Panov, “Torus actions and combinatorics of polytopes,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 225, 96–131 (1999) [Proc. Steklov Inst. Math. 225, 87–120 (1999)].

    Google Scholar 

  9. V. M. Buchstaber and T. E. Panov, “Torus actions, combinatorial topology, and homological algebra,” Usp. Mat. Nauk 55(5), 3–106 (2000) [Russ. Math. Surv. 55, 825–921 (2000)].

    Article  Google Scholar 

  10. V. M. Buchstaber and T. E. Panov, Torus Actions in Topology and Combinatorics (MTsNMO, Moscow, 2004) [in Russian].

    Google Scholar 

  11. V. M. Buchstaber and N. Ray, “Toric manifolds and complex cobordisms,” Usp. Mat. Nauk 53(2), 139–140 (1998) [Russ. Math. Surv. 53, 371–373 (1998)].

    Article  Google Scholar 

  12. `E. B. Vinberg, “Discrete linear groups generated by reflections,” Izv. Akad. Nauk SSSR, Ser. Mat. 35(5), 1072–1112 (1971) [Math. USSR, Izv. 5, 1083–1119 (1971)].

    MathSciNet  MATH  Google Scholar 

  13. V. D. Volodin, “Cubical realizations of flag nestohedra and proof of Gal’s conjecture for them,” Usp. Mat. Nauk 65(1), 183–184 (2010) [Russ. Math. Surv. 65, 188–190 (2010)].

    Article  MathSciNet  Google Scholar 

  14. A. A. Gaifullin, “Explicit construction of manifolds realising prescribed homology classes,” Usp. Mat. Nauk 62(6), 167–168 (2007) [Russ. Math. Surv. 62, 1199–1201 (2007)].

    Article  MathSciNet  Google Scholar 

  15. I. M. Gel’fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds,” Usp. Mat. Nauk 42(2), 107–134 (1987) [Russ. Math. Surv. 42 (2), 133–168 (1987)].

    MathSciNet  MATH  Google Scholar 

  16. V. A. Emelichev, O. I. Mel’nikov, V. I. Sarvanov, and R. I. Tyshkevich, Lectures on Graph Theory (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  17. N. Yu. Erokhovets, “Buchstaber invariant of simple polytopes,” Usp. Mat. Nauk 63(5), 187–188 (2008) [Russ. Math. Surv. 63, 962–964 (2008)].

    Article  MathSciNet  Google Scholar 

  18. N. Yu. Erokhovets, “Gal’s conjecture for nestohedra corresponding to complete bipartite graphs,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 266, 127–139 (2009) [Proc. Steklov Inst. Math. 266, 120–132 (2009)].

    MathSciNet  Google Scholar 

  19. N. Yu. Erokhovets, “Moment-angle manifolds of simple n-polytopes with n + 3 facets,” Usp. Mat. Nauk 66(5), 187–188 (2011) [Russ. Math. Surv. 66, 1006–1008 (2011)].

    Article  MathSciNet  Google Scholar 

  20. I. V. Izmest’ev, “Free torus action on the manifold ZP and the group of projectivities of a polytope P,” Usp. Mat. Nauk 56(3), 169–170 (2001) [Russ. Math. Surv. 56, 582–583 (2001)].

    Article  MathSciNet  Google Scholar 

  21. I. V. Izmestiev, “Three-dimensional manifolds defined by coloring a simple polytope,” Mat. Zametki 69(3), 375–382 (2001) [Math. Notes 69, 340–346 (2001)].

    Article  MathSciNet  Google Scholar 

  22. M. Joswig, “The group of projectivities and colouring of the facets of a simple polytope,” Usp. Mat. Nauk 56(3), 171–172 (2001) [Russ. Math. Surv. 56, 584–585 (2001)].

    Article  MathSciNet  Google Scholar 

  23. S. P. Novikov and I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds,” Usp. Mat. Nauk 52(5), 175–234 (1997) [Russ. Math. Surv. 52, 1057–1116 (1997)].

    Article  MathSciNet  Google Scholar 

  24. Yu. M. Ustinovskii, “Doubling operation for polytopes and torus actions,” Usp. Mat. Nauk 64(5), 181–182 (2009) [Russ. Math. Surv. 64, 952–954 (2009)].

    Article  MathSciNet  Google Scholar 

  25. G. Agnarsson, “The flag polynomial of the Minkowski sum of simplices,” Ann. Comb. 17(3), 401–426 (2013); arXiv: 1006.5928 [math.CO].

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Ayzenberg, “The problem of Buchstaber number and its combinatorial aspects,” arXiv: 1003.0637v1 [math.CO].

  27. A. Ayzenberg, “Composition of simplicial complexes, polytopes and multigraded Betti numbers,” arXiv: 1301.4459 [math.CO].

  28. A. Ayzenberg, “Buchstaber numbers and classical invariants of simplicial complexes,” arXiv: 1402.3663v1 [math.CO].

  29. A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, “Operations on polyhedral products and a new topological construction of infinite families of toric manifolds,” arXiv: 1011.0094 [math.AT].

  30. G. Birkhoff, “Abstract linear dependence and lattices,” Am. J. Math. 57, 800–804 (1935).

    Article  MathSciNet  Google Scholar 

  31. F. Bosio and L. Meersseman, “Real quadrics in C n, complex manifolds and convex polytopes,” Acta Math. 197(1), 53–127 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. M. Buchshtaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics (Am. Math. Soc., Providence, RI, 2002).

    Google Scholar 

  33. V. M. Buchstaber and T. E. Panov, “Toric topology,” arXiv: 1210.2368 [math.AT].

  34. V. M. Buchstaber, T. E. Panov, and N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds,” Moscow Math. J. 7(2), 219–242 (2007); arXiv:math/0609346 [math.AT].

    MathSciNet  MATH  Google Scholar 

  35. S. Choi, T. Panov, and D. Y. Suh, “Toric cohomological rigidity of simple convex polytopes,” J. London Math. Soc., Ser. 2, 82(2), 343–360 (2010); arXiv: 0807.4800 [math.AT].

    Article  MathSciNet  MATH  Google Scholar 

  36. M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J. 62(2), 417–451 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  37. I. A. Dynnikov and S. P. Novikov, “Geometry of the triangle equation on two-manifolds,” Moscow Math. J. 3(2), 419–438 (2003).

    MathSciNet  MATH  Google Scholar 

  38. E. M. Feichtner and B. Sturmfels, “Matroid polytopes, nested sets and Bergman fans,” Port. Math. 62(4), 437–468 (2005).

    MathSciNet  MATH  Google Scholar 

  39. Y. Fukukawa and M. Masuda, “Buchstaber invariants of skeleta of a simplex,” Osaka J. Math. 48(2), 549–582 (2011); arXiv: 0908.3448v2 [math.AT].

  40. A. A. Gaifullin, “Universal realisators for homology classes,” Geom. Topol. 17(3), 1745–1772 (2013); arXiv: 1201.4823 [math.AT].

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Gitler and S. López de Medrano, “Intersections of quadrics, moment-angle manifolds and connected sums,” arXiv: 0901.2580v1 [math.GT].

  42. B. Grünbaum, Convex Polytopes, 2nd ed. (Springer, New York, 2003), Grad. Texts Math. 221.

    Book  Google Scholar 

  43. N. Erokhovets, “Buchstaber invariant of simple polytopes,” arXiv: 0908.3407 [math.AT].

  44. N. Erokhovets, “Criterion for the Buchstaber invariant of simplicial complexes to be equal to two,” arXiv: 1212.3970 [math.AT].

  45. M. Joswig, “Projectivities in simplicial complexes and colorings of simple polytopes,” arXiv:math/0102186v3 [math.CO].

  46. V. Klee and D. W. Walkup, “The d-step conjecture for polyhedra of dimension d < 6,” Acta Math. 117, 53–78 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. López de Medrano, “Topology of the intersection of quadrics in ℝn,” in Algebraic Topology: Proc. Int. Conf., Arcata, CA, 1986 (Springer, Berlin, 1989), Lect. Notes Math. 1370, pp. 280–292.

    Chapter  Google Scholar 

  48. S. MacLane, “Some interpretations of abstract linear dependence in terms of projective geometry,” Am. J. Math. 58, 236–240 (1936).

    Article  MathSciNet  Google Scholar 

  49. S. MacLane, “A lattice formulation for transcendence degrees and p-bases,” Duke Math. J. 4, 455–468 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  50. J. G. Oxley, Matroid Theory (Oxford Univ. Press, Oxford, 2006).

    MATH  Google Scholar 

  51. U. Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten,” Abh. Math. Semin. Univ. Hamburg 57, 69–86 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  52. U. Pachner, “P.l. homeomorphic manifolds are equivalent by elementary shellings,” Eur. J. Comb. 12(2), 129–145 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Postnikov, “Permutohedra, associahedra, and beyond,” arXiv:math/0507163 [math.CO].

  54. A. Postnikov, V. Reiner, and L. Williams, “Faces of generalized permutohedra,” arXiv: math/0609184v2 [math.CO].

  55. J. S. Provan and L. J. Billera, “Decompositions of simplicial complexes related to diameters of convex polyhedra,” Math. Oper. Res. 5(4), 576–594 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  56. H. Whitney, “On the abstract properties of linear dependence,” Am. J. Math. 57, 509–533 (1935).

    Article  MathSciNet  Google Scholar 

  57. A. Zelevinsky, “Nested complexes and their polyhedral realizations,” Pure Appl. Math. Q. 2(3), 655–671 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  58. G. M. Ziegler, Lectures on Polytopes (Springer, New York, 2007), Grad. Texts Math. 152.

    Google Scholar 

  59. R. T. Živaljević, “Combinatorial groupoids, cubical complexes, and the Lovász conjecture,” arXiv:math/0510204 [math.CO].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Erokhovets.

Additional information

Original Russian Text © N.Yu. Erokhovets, 2014, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2014, Vol. 286, pp. 144–206.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhovets, N.Y. Buchstaber invariant theory of simplicial complexes and convex polytopes. Proc. Steklov Inst. Math. 286, 128–187 (2014). https://doi.org/10.1134/S008154381406008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381406008X

Keywords

Navigation