Skip to main content
Log in

The theta number of simplicial complexes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a generalization of the celebrated Lovász theta number of a graph to simplicial complexes of arbitrary dimension. Our generalization takes advantage of real simplicial cohomology theory, in particular combinatorial Laplacians, and provides a semidefinite programming upper bound of the independence number of a simplicial complex. We consider properties of the graph theta number such as the relationship to Hoffman’s ratio bound and to the chromatic number and study how they extend to higher dimensions. Like in the case of graphs, the higher dimensional theta number can be extended to a hierarchy of semidefinite programming upper bounds reaching the independence number. We analyze the value of the theta number and of the hierarchy for dense random simplicial complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Anjos and J. B. Lasserre, Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, Vol. 166, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  2. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA; Mathematical Programming Society, Philadelphia, PA, 2001.

    Book  MATH  Google Scholar 

  3. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  4. A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Univesitext, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  5. H. Cohn, A. Kumar, S. D. Miller, D. Radchenko and M. S. Viazovska, The sphere packing problem in dimension 24, Annals of Mathematics 185 (2017), 1017–1033.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Coja-Oghlan, The Lovász number of random graphs, Combinatorics, Probability and Computing 14 (2005), 439–465.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. E. B. DeCorte, D. de Laat and F. Vallentin, Fourier analysis on finite groups and the Lovász theta-number of Cayley graphs, Experimental Mathematics 23 (2014), 146–152.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Journal of Research 10(1973).

  9. D. Dotterrer, T. Kaufman and U. Wagner, On expansion and topological overlap, Geometriae Dedicata 195 (2018), 3017–317.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Dotterrer, L. Guth and M. Kahle, 2-complexes with large 2-girth, Discrete & Computational Geometry 59 (2018), 383–412.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. M. Duval, C. J. Klivans and J. L. Martin, Simplicial and cellular trees, in Recent Trends in Combinatorics, The IMA Volumes in Mathematics and its Applications, Vol. 159, Springer, Cham, 2016, pp. 713–752.

    Chapter  Google Scholar 

  12. D. Ellis, E. Friedgut and H. Pilpel, Intersecting families of permutations, Journal of the American Mathematical Society 24 (2011), 649–682.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Ellis, Y. Filmus and E. Friedgut, Triangle-intersecting families of graphs, Journal of the European Mathematical Society 14 (2012), 841–885.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Evra, K. Golubev and A. Lubotzky, Mixing properties and the chromatic number of Ramanujan complexes, International Mathematics Research Notices 22 (2015), 11520–11548.

    MathSciNet  MATH  Google Scholar 

  15. S. Evra and T. Kaufman, Bounded degree cosystolic expanders of every dimension, in STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2016, pp. 36–48.

    MATH  Google Scholar 

  16. U. Feige and E. Ofek, Spectral techniques applied to sparse random graphs, Random Structures & Algorithms 27 (2005), 251–275.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Annals of Mathematics 97 (1973), 375–423.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite Programming, Springer, Heidelberg, 2012.

    Book  MATH  Google Scholar 

  19. K. Golubev, On the chromatic number of a simplicial complex, Combinatorica 37 (2017), 953–964.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Gromov, Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geometric and Functional Analysis 20 (2010), 416–526.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Gundert and U. Wagner, On eigenvalues of random complexes, Israel Journal of Mathematics 216 (2016), 545–582.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Hoffman, M. Kahle and E. Paquette, Spectral gaps of random graphs and applications to random topology, arXiv.math:1201.0425.

  23. D. Horak and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Advances in Mathematics 244 (2013), 303–336.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Juhász, The aymptotic behaviour of Lovász theta function for random graphs, Combinatorica 2 (1982), 153–155.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kahle, Random simplicial complexes, in Handbook of Discrete and Computational Geometry, CRC, Boca Raton, FL, 2017, pp. 581–603.

    Google Scholar 

  26. G. Kalai, Enumeration of ℚ-acyclic simplicial complexes, Israel Journal of Mathematics 45 (1983), 337–351.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Kaufman, D. Kazhdan and A. Lubotzky, Isoperimetric inequalities for Ramanujan complexes and topological expanders, Geometric and Functional Analysis 26 (2016), 250–287.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Krivelevich and B. Sudakov, The chromatic numbers of random hypergraphs, Random Structures & Algorithms 12 (1998), 381–403.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear 0–1 programs, SIAM Journal on Optimization 12 (2002), 756–769.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxationsfor 0–1 programming, Mathematics of Operations Research 28 (2003), 470–496.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Linial and R. Meshulam, Homological connectivity of random 2-complexes, Combinatorica 26 (2006), 475–487.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information Theory 25 (1979), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Lubotzky, Ramanujan complexes and high dimensional expanders, Japanese Journal of Mathematics 9 (2014), 137–169.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Lubotzky and R. Meshulam, A Moore bound for simplicial complexes, Bulletin of the London Mathematical Society 39 (2007), 353–358.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Matouşek, M. Tancer and U. Wagner, Hardness of embedding simplicial complexes ind, Journal of the European Mathematical Society 13 (2011), 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  36. F. M. de Oliveira Filho and F. Vallentin, Computing upper bounds for packing densities of congruent copies of a convex body, in New Trends in Intuitive Geometry, Bolyai Society Mathematical Studies, Vol. 27, Springer, Berlin-Heidelberg, 2018, pp. 155–188.

    Chapter  Google Scholar 

  37. O. Parzanchevski and R. Rosenthal, Simplicial complexes: Spectrum, homology and random walks, Random Structures & Algorithms 50 (2017), 225–261.

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Parzanchevski, R. Rosenthal and R. J. Tessler, Isoperimetric inequalities in simplicial complexes, Combinatorica 36 (2016), 195–227.

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review 38 (1996), 49–95.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. S. Viazovska, The sphere packing problem in dimension 8, Annals of Mathematics 185 (2017), 991–1015.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Gundert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachoc, C., Gundert, A. & Passuello, A. The theta number of simplicial complexes. Isr. J. Math. 232, 443–481 (2019). https://doi.org/10.1007/s11856-019-1880-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1880-8

Navigation