Skip to main content
Log in

A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer

  • HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The main results obtained for the last decade in studying the possibilities of enhancing boiling heat transfer and increasing critical heat fluxes are reviewed. Heat transfer enhancement methods involving the use of a modified/structured boiling surface obtained by means of mechanized processing, electrochemical technologies, plasma and ion deposition, laser emission, and subcooled liquid boiling are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Yu.A. Kuzma-Kichta, A.V. Lavrikov, M.V. Shustov, P.S. Chursin, A.V. Chistyakova, Yu.A. Zvonarev, V.M. Zhukov, and L.T. Vasil’eva, “Studying Heat Transfer Enhancement for Water Boiling on a Surface with Micro- and Nanorelief,” Therm. Eng. 61 (3), 210–213 (2014).

REFERENCES

  1. V. V. Yagov, “Generic features and puzzles of nucleate boiling,” Int. J. Heat Mass Transfer 52, 5241–5249 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.071

    Article  Google Scholar 

  2. D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci. 66, 173–196 (2015). https://doi.org/10.1016/j.expthermflusci.2015.03.023

    Article  Google Scholar 

  3. H. S. Ahn and M. H. Kim, “A review on critical heat flux enhancement with nanofluids and surface modification,” J. Heat Transfer 134, 024001-3 (2012). https://doi.org/10.1115/1.4005065

    Article  Google Scholar 

  4. M. Shojaeian and A. Kosar, “Pool boiling and flow boiling on micro- and nanostructured surfaces,” Exp. Therm. Fluid Sci. 63, 45–73 (2015). https://doi.org/10.1016/j.expthermflusci.2014.12.016

    Article  Google Scholar 

  5. S. Moria and Y. Utaka, “Critical heat flux enhancement by surface modification in a saturated pool boiling: A review,” Int. J. Heat Mass Transfer 108, 2534–2557 (2017).

    Article  Google Scholar 

  6. V. M. Wasekar and R. M. Manglik, “A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions,” J. Enhanced Heat Transfer 6, 135–150 (1999). https://doi.org/10.1615/JEnhHeatTransf.v6.i2-4.70

    Article  Google Scholar 

  7. L. Cheng, D. Mewes, and A. Luke, “Boiling phenomena with surfactants and polymeric additives: A state-of-the-art review,” Int. J. Heat Mass Transfer 50, 2744–2771 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.016

    Article  MATH  Google Scholar 

  8. N. N. Zubkov, “Obtaining subsurface cavities by deforming cutting to intensify bubble boiling,” Vestn. Mashinostr., No. 11, 75–79 (2014).

  9. R. Hosseini, A. Gholaminejad, and M. Nabil, “Concerning the effect of surface material on nucleate boiling heat transfer of R-113,” J. Electron. Cool. Therm. Control 1, 22–27 (2011). https://doi.org/10.1115/AJTEC2011-44498

    Article  Google Scholar 

  10. D. W. Zhong, J. Meng, Z. X. Li, and Z. Y. Guo, “Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces,” Int. J. Heat Mass Transfer 87, 201–211 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.001

    Article  Google Scholar 

  11. T. Chen, “An experimental investigation of nucleate boiling heat transfer from an enhanced cylindrical surface,” Appl. Therm. Eng. 59, 355–361 (2013). https://doi.org/10.1016/j.applthermaleng.2013.05.033

    Article  Google Scholar 

  12. S. W. Chen, J. C. Hsieh, C. T. Chou, H. H. Lin, S. C. Shen, and M. J. Tsai, “Experimental investigation and visualization on capillary and boiling limits of microgrooves made by different processes,” Sens. Actuat-ors A: Phys. 139, 78–87 (2007).

    Article  Google Scholar 

  13. S. Ryu, J. Han, J. Kim, C. Lee, and Y. Nam, “Enhanced heat transfer using metal foam liquid supply layers for micro heat spreaders,” Int. J. Heat Mass Transfer 108, 2338–2345 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.071

    Article  Google Scholar 

  14. G. I. Idrisova, A. A. Lopatin, and V. I. Osipova, “Heat transfer intensification during boiling of R-134A freon on mini- and micro-rough surfaces,” Naucho-Tekh. Vestn. Povolzh’ya., No. 1, 26–29 (2011).

  15. I. A. Popov, A. V. Shchelchkov, Yu. F. Gortyshov, and N. N. Zubkov, “Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces,” High Temp. 55, 524–534 (2017). https://doi.org/10.1134/S0018151X17030208

    Article  Google Scholar 

  16. O. A. Volodin, N. I. Pecherkin, A. N. Pavlenko, N. N. Zubkov, and Yu. L. Bityutskaya, “Heat transfer at boiling of R114/R21 refrigerants mixture film on microstructured surfaces,” J. Phys.: Conf. Ser. 891, 012 035 (2017). https://doi.org/10.1088/1742-6596/891/1/012035

    Article  Google Scholar 

  17. O. A. Volodin, N. I. Pecherkin, A. N. Pavlenko, N. N. Zubkov, and Yu. L. Bityutskaya, “Influence of surface structuring type on heat transfer during evaporation and boiling in draining films,” Interekspo Geo-Sibir’ 5, 157–162 (2017).

    Google Scholar 

  18. O. Volodin, N. Pecherkin, A. Pavlenko, and N. Zubkov, “Heat transfer and crisis phenomena at boiling of refrigerant films falling down the surfaces obtained by deformational cutting,” Interfacial Phenom. Heat Transfer 5, 215–222 (2017). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025507

    Article  Google Scholar 

  19. O. A. Volodin, N. I. Pecherkin, A. N. Pavlenko, and N. N. Zubkov, “Features of boiling of draining films of refrigerants on surfaces with semi-closed subsurface cavities,” Sinergiya Nauk 1, 1106–1119 (2017).

    Google Scholar 

  20. A. V. Shchelchkov, I. A. Popov, and N. N. Zubkov, “Boiling of a liquid on microstructured surfaces under free-convection conditions,” J. Eng. Phys. Thermophys. 89, 1152–1160 (2016).

    Article  Google Scholar 

  21. I. S. Antonenkova, A. A. Sukhikh, and E. V. Ezhov, “Thermal technical characteristics of the evaporator and condenser THU on R22 with surfaces processed by the deforming cutting technology,” Kholod. Tekh., No. 10, 30–37 (2016).

  22. I. I. Gogonin, “The influence of the wetting angle on heat transfer during boiling,” Teplofiz. Aeromekh. 17, 261–267 (2010).

    Google Scholar 

  23. S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003). https://doi.org/10.1016/S0017-9310(02)00348-4

    Article  MATH  Google Scholar 

  24. S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett. 83, 3374–3376 (2003). https://doi.org/10.1063/1.1619206

    Article  Google Scholar 

  25. S. U. S. Choi, “Nanofluids: From vision to reality through research,” J. Heat Transfer 131, 033 106 (2009). https://doi.org/10.1115/1.3056479

    Article  Google Scholar 

  26. X. Fang, Y. Chen, H. Zhang, W. Chen, A. Dong, and R. Wang, “Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review,” Renewable Sustainable Energy Rev. 62, 924–940 (2016). https://doi.org/10.1016/j.rser.2016.05.047

    Article  Google Scholar 

  27. G. Liang and I. Mudawar, “Review of pool boiling enhancement with additives and nanofluids,” Int. J. Heat Mass Transfer 124, 423–453 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.046

    Article  Google Scholar 

  28. M. Z. Sulaiman, D. Matsuo, K. Enoki, and T. Okawa, “Systematic measurements of heat transfer characteristics in saturated pool boiling of water-based nanofluids,” Int. J. Heat Mass Transfer 102, 264–276 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.017

    Article  Google Scholar 

  29. J. H. Lee, T. Lee, and Y. H. Jeong, “The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles,” Int. J. Heat Mass Transfer 61, 432–438 (2013).

    Article  Google Scholar 

  30. I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool,” Int. J. Heat Mass Transfer 48, 2407–2419 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047

    Article  Google Scholar 

  31. S. S. Park and N. J. Kim, “Critical heat flux enhancement in pool-boiling heat transfer using oxidized multi-wall carbon nanotubes,” Int. J. Energy Res. 39, 1391–1401 (2015). https://doi.org/10.1002/er.3341

    Article  Google Scholar 

  32. R. Kumar and D. Milanova, “Effect of surface tension on nanotube nanofluids,” Appl. Phys. Lett. 94, 073 107 (2009). https://doi.org/10.1063/1.3085766

    Article  Google Scholar 

  33. K.-J. Park and D. Jung, “Enhancement of nucleate boiling heat transfer using carbon nanotubes,” Int. J. Heat Mass Transfer 50, 4499–4502 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.012

    Article  MATH  Google Scholar 

  34. Yu. A. Kuzma-Kichta, V. M. Zhukov, A. V. Lavrikov, N. A. Stenina, A. V. Chistyakova, P. S. Chursin, Sh. Sholl’, and M. V. Shustov, “Study of contact angles and boiling crisis on a surface with artificial nanorelief,” Tepl. Protsessy Tekh., No. 7, 290–294 (2013).

  35. H. D. Kim, J. Kim, and M. H. Kim, “Experimental studies on CHF characteristics of nano-fluids at pool boiling,” Int. J. Multiphase Flow 33, 691–706 (2007). https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007

    Article  Google Scholar 

  36. J. Barber, D. Brutin, and L. Tadrist, “A review on boiling heat transfer enhancement with nanofluids,” Nanoscale Res Lett. 6, 280 (2011). https://doi.org/10.1186/1556-276X-6-280

    Article  Google Scholar 

  37. A. L. Sirotkina, E. D. Fedorovich, and V. V. Sergeev, “Heat transfer in nanofluids (studies review). 2: Boiling and boiling crisis,” Tepl. Protsessy Tekh., No. 3, 106–112 (2017).

  38. N. V. Vasil’ev, A. Yu. Varaksin, Yu. A. Zeigarnik, K. A. Khodakov, and A. V. Epel’fel’d, “Characteristics of subcooled water boiling on structured surfaces,” High Temp. 55, 880–886 (2017). https://doi.org/10.1134/S0018151X17060189

    Article  Google Scholar 

  39. S. B. Seo and I. C. Bang, “Effects of Al2O3 nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer,” Nucl. Eng. Technol. 47, 398–406 (2015). https://doi.org/10.1016/j.net.2015.04.003

    Article  Google Scholar 

  40. M. V. Shustov, Yu. A. Kuzma-Kichta, and A. V. Lavrikov, “Nanoparticle coating of a microchannel surface is an effective method for increasing the critical heat flux,” Therm. Eng. 64, 301–306 (2017). https://doi.org/10.1134/S0040601517040073

    Article  Google Scholar 

  41. G. Harish, V. Emlin, and V. Sajith, “Effect of surface particle interactions during pool boiling of nanofluids,” Int. J. Therm. Sci. 50, 2318–2327 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.06.019

    Article  Google Scholar 

  42. G. P. Narayan, K. B. Anoop, and S. K. Das, “Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes,” J. Appl. Phys. 102, 074 317 (2007). https://doi.org/10.1063/1.2794731

    Article  Google Scholar 

  43. D. Wen, “Influence of nanoparticles on boiling heat transfer,” Appl. Therm. Eng. 41, 2–9 (2012). https://doi.org/10.1016/j.applthermaleng.2011.08.035

    Article  Google Scholar 

  44. L. L. Manetti, M. T. Stephen, P. A. Beck, and E. M. Cardoso, “Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3–water based nanofluid,” Exp. Therm. Fluid Sci. 87, 191–200 (2017). https://doi.org/10.1016/j.expthermflusci.2017.04.018

    Article  Google Scholar 

  45. Y. H. Diao, C. Z. Li, Y. H. Zhao, Y. Liu, and S. Wang, “Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure,” Int. J. Heat Mass Transfer 89, 110–115 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.043

    Article  Google Scholar 

  46. K.-J. Park and D. Jung, “Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning,” Energy Build 39, 1061–1064 (2007).https://doi.org/10.1016/j.enbuild.2006.12.001

    Article  Google Scholar 

  47. E. I. Eid, R. A. Khalaf-Allah, S. H. Taher, and A. A. Al-Nagdy, “An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A,” Heat Mass Transfer 53, 2597–2607 (2017). https://doi.org/10.1007/s00231-017-2010-y

    Article  Google Scholar 

  48. X. Tang, Y.-H. Zhao, and Y.-H. Diao, “Experimental investigation of the nucleate pool boiling heat transfer characteristics of d-Al2O3-R141b nanofluids on a horizontal plate,” Exp. Therm. Fluid Sci. 52, 88–96 (2014). https://doi.org/10.1016/j.expthermflusci.2013.08.025

    Article  Google Scholar 

  49. H. Kim, J. Kim, and M. H. Kim, “Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids,” Int. J. Heat Mass Transfer 49, 5070–5074 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019

    Article  Google Scholar 

  50. H. S. Ahn and M. H. Kim, “The boiling phenomenon of alumina nanofluid near critical heat flux,” Int. J. Heat Mass Transfer 62, 718–728 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.054

    Article  Google Scholar 

  51. A. Mourgues, V. Hourtané, T. Muller, and M. Caron-Charles, “Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid,” Int. J. Heat Mass Transfer 57, 595–607 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.073

    Article  Google Scholar 

  52. S. Song, J. H. Lee, and S. H. Chang, “CHF enhancement of SiC nanofluid in pool boiling experiment,” Exp. Therm. Fluid Sci. 52, 12–18 (2014). https://doi.org/10.1016/j.expthermflusci.2013.08.008

    Article  Google Scholar 

  53. S. B. White, A. J. Shih, and K. P. Pipe, “Effects of nanoparticle layering on nanofluid and base fluid pool boiling heat transfer from a horizontal surface under atmospheric pressure,” J. Appl. Phys. 107, 114 302 (2010). https://doi.org/10.1063/1.3342584

    Article  Google Scholar 

  54. F. Zhang and A. M. Jacobi, “Aluminum surface wettability changes by pool boiling of nanofluids,” Colloids Surf., A 506, 438–444 (2016). https://doi.org/10.1016/j.colsurfa.2016.07.026

    Article  Google Scholar 

  55. H. Kim, J. Buongiorno, L.-W. Hu, and T. McKrell, “Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids,” Int. J. Heat Mass Transfer 53, 1542–1553 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.029

    Article  Google Scholar 

  56. S. D. Park, S. Lee, S. Kang, I. C. Bang, J. H. Kim, H. S. Shin, and D. W. Lee, “Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux,” Appl. Phys. Lett. 97, 023 103(2010). https://doi.org/10.1063/1.3459971

    Article  Google Scholar 

  57. H. S. Ahn, J.-W. Jang, M. Seol, J. M. Kim, D.-J. Yun, C. Park, H. Kim, D. H. Youn, J. Y. Kim, and G. Park, “Self-assembled foam-like graphene networks formed through nucleate boiling,” Sci. Rep. 3, 1396 (2013). https://doi.org/10.1038/srep01396

    Article  Google Scholar 

  58. J. S. Coursey and J. Kim, “Nanofluid boiling: The effect of surface wettability,” Int. J. Heat Fluid Flow 29, 1577–1585 (2008). .https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004

    Article  Google Scholar 

  59. C. Hsu, M. Lee, C. Wu, and P. Chen, “Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling,” Appl. Therm. Eng. 112, 1187–1194 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.176

    Article  Google Scholar 

  60. S. Kumar, Y. Chang, and P. Chen, “Effect of heterogeneous wettable structures on pool boiling performance of cylindrical copper surfaces,” Appl. Therm. Eng. 127, 1184–1193 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.069

    Article  Google Scholar 

  61. Y. Takata, S. Hidaka, M. Masuda, and T. Ito, “Pool boiling on a superhydrophilic surface,” Int. J. Energy Res. 27, 111–119 (2003). https://doi.org/10.1002/er.861

    Article  Google Scholar 

  62. L. Zhang, T. Wanga, Y. Jiang, S. Kim, and C. Guo, “A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method,” Int. J. Heat Mass Transfer 122, 775–784 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.026

    Article  Google Scholar 

  63. J. Kim, S. Kang, D. Yu, H. Park, K. Moriyama, and M. Kim, “Smart surface in flow boiling: Spontaneous change of wettability,” Int. J. Heat Mass Transfer 105, 147–156 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.047

    Article  Google Scholar 

  64. C. Li, Z. Wang, P.-I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, “Nanostructured copper interfaces for enhanced boiling,” Small 4, 1084–1088 (2008). https://doi.org/10.1002/smll.200700991

    Article  Google Scholar 

  65. Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci. 50, 2084–2090 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.06.009

    Article  Google Scholar 

  66. G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transfer 128, 892–933 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.026

    Article  Google Scholar 

  67. Y. Wang, J. Luo, Y. Heng, D. Mo, and S. Lyu, “Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure,” Int. J. Heat Mass Transfer 119, 333–342 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.080

    Article  Google Scholar 

  68. C. Patil, K. Santhanam, and S. Kandlikar, “Development of a two-step electrodeposition process for enhancing pool boiling,” Int. J. Heat Mass Transfer 79, 989–1001 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.062

    Article  Google Scholar 

  69. P. Xu, Q. Li, and Y. Xuan, “Enhanced boiling heat transfer on composite porous surface,” Int. J. Heat Mass Transfer 80, 107–114 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.048

    Article  Google Scholar 

  70. R. Khodabandeh and R. Furberg, “Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosiphon loop,” Int. J. Therm. Sci. 49, 1183–1192 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.01.016

    Article  Google Scholar 

  71. C. Byon, S. Choi, and S. J. Kim, “Critical heat flux of bi-porous sintered copper coatings in FC-72,” Int. J. Heat Mass Transfer 65, 655–661 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.029

    Article  Google Scholar 

  72. M. S. El-Genk and A. F. Ali, “Enhanced nucleate boiling on copper micro-porous surfaces,” Int. J. Multiphase Flow 36, 780–792 (2010). https://doi.org/10.1016/j.ijmultiphaseflow.2010.06.003

    Article  Google Scholar 

  73. M. S. El-Genk and A. F. Ali, “Enhancement of saturation boiling of PF-5060 on microporous copper dendrite surfaces,” J. Heat Transfer 132, 071 501 (2010).

    Article  Google Scholar 

  74. G. S. Hwang and M. Kaviany, “Critical heat flux in thin, uniform particle coatings,” Int. J. Heat Mass Transfer 49, 844–849 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.020

    Article  Google Scholar 

  75. C. H. Li, T. Li, P. Hodgins, C. N. Hunter, A. A. Voevodin, J. G. Jones, and G. P. Peterson, “Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures,” Int. J. Heat Mass Transfer 54, 3146–3155 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.062

    Article  Google Scholar 

  76. S. Li, R. Furberg, M. S. Toprak, B. Palm, and M. Muhammed, “Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces,” Adv. Funct. Mater. 18, 2215–2220 (2008). https://doi.org/10.1002/adfm.200701405

    Article  Google Scholar 

  77. J. H. Kim, A. Gurung, M. Amaya, S. M. Kwark, and S. M. You, “Microporous coatings to maximize pool boiling heat transfer of saturated R-123 and water,” J. Heat Transfer 137, 081 501 (2015). https://doi.org/10.1115/1.4030245

    Article  Google Scholar 

  78. S. Jun, J. Kim, S. M. You, and H. Y. Kim, “Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water,” Int. J. Heat Mass Transfer 103, 277–284 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.030

    Article  Google Scholar 

  79. S. Jun, J. Kim, D. Son, H. Y. Kim, and S. M. You, “Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings,” Nucl. Eng. Technol. 48, 932–940 (2016). https://doi.org/10.1016/j.net.2016.02.018

    Article  Google Scholar 

  80. S. Jun, H. Wi, A. Gurung, M. Amaya, and S. M. You, “Pool boiling heat transfer enhancement of water using brazed copper microporous coatings,” J. Heat Transfer 138, 071 502 (2016). https://doi.org/10.1115/1.4032988

    Article  Google Scholar 

  81. S. Sarangi, J. A. Weibel, and S. V. Garimella, “Quantitative evaluation of the dependence of pool boiling heat transfer enhancement on sintered particle coating characteristics,” J. Heat Transfer 139, 021 502 (2017). https://doi.org/10.1115/1.4034901

    Article  Google Scholar 

  82. S. J. Thiagarajan, R. Yang, C. King, and S. Narumanchi, “Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces,” Int. J. Heat Mass Transfer 89, 1297–1315 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.013

    Article  Google Scholar 

  83. D. H. Min, G. S. Hwang, Y. Usta, O. N. Cora, M. Koc, and M. Kaviany, “2-D and 3-D modulated porous coatings for enhanced pool boiling,” Int. J. Heat Mass Transfer 52, 2607–2613 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.018

    Article  Google Scholar 

  84. X. Ji, J. Xu, Z. Zhao, and W. Yang, “Pool boiling heat transfer on uniform and nonuniform porous coating surfaces,” Exp. Therm. Fluid Sci. 48, 198–212 (2013). https://doi.org/10.1016/j.expthermflusci.2013.03.002

    Article  Google Scholar 

  85. A. Jaikumar, A. Rishi, A. Gupta, and S. G. Kandlikar, “Microscale morphology effects of copper–graphene oxide coatings on pool boiling characteristics,” J. Heat Transfer 139. P. 111 509 (2017). https://doi.org/10.1115/1.4036695

    Article  Google Scholar 

  86. A. M. Gheitaghya, H. Saffaria, and G. Q. Zhang, “Effect of nanostructured microporous surfaces on pool boiling augmentation,” Neat Transfer Eng. 40, 762–771 (2019). https://doi.org/10.1080/01457632.2018.1442310

    Article  Google Scholar 

  87. A. Surtaev, D. Kuznetsov, V. Serdyukov, A. Pavlenko, V. Kalita, D. Komlev, A. Ivannikov, and A. Radyuk, “Structured capillary-porous coatings for enhancement of heat transfer at pool boiling,” Appl. Therm. Eng. 133, 532–542 (2018). https://doi.org/10.1016/j.applthermaleng.2018.01.051

    Article  Google Scholar 

  88. A. Surtaev, A. Pavlenko, D. Kuznetsov, V. Serdyukov, V. Kalita, D. Komlev, A. Ivannikov, and A. Radyuk, “Heat transfer and crisis phenomena at pool boiling of liquid nitrogen on the surfaces with capillary-porous coatings,” Int. J. Heat Mass Transfer 108, 146–155 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.100

    Article  Google Scholar 

  89. M. Župančič, M. Može, P. Gregorčič, and I. Golobič, “Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer,” Appl. Surf. Sci. 399, 480–490 (2017). https://doi.org/10.1016/j.apsusc.2016.12.120

    Article  Google Scholar 

  90. I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of finestructured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. (2009) 255, 5523–5527 (2009). https://doi.org/10.1016/j.apsusc.2008.07.154

    Article  Google Scholar 

  91. J. Sun, Y. Yang, and D. Wang, “Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting,” Adv. Mech. Eng. 49, 545–556 (2013). https://doi.org/10.1155/2012/427386

    Article  Google Scholar 

  92. J. Y. Ho, K. K. Wong, and K. C. Leong, “Saturated pool boiling of FC-72 from enhanced surfaces produced by selective laser melting,” Int. J. Heat Mass Transfer 99, 107–121 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.073

    Article  Google Scholar 

  93. K. K. Wong and K. C. Leong, “Saturated pool boiling enhancement using porous lattice structures produced by selective laser melting,” Int. J. Heat Mass Transfer 121, 46 (2018).

    Article  Google Scholar 

  94. C. Zhang, L. Zhang, H. Xu, P. Li, and B. Qian, “Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique,” Int. J. Heat Mass Transfer 128, 570–580 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.021

    Article  Google Scholar 

  95. Y. Wang, Y. Shen, Z. Wang, J. Yang, N. Liu, and W. Huang, “Development of highly porous titanium scaffolds by selective laser melting,” Mater. Lett. 64, 674–676 (2010).

    Article  Google Scholar 

  96. S. A. Romashevskiy, M. B. Agranat, and A. S. Dmitriev, “Thermal training of functional surfaces fabricated with femtosecond laser pulses,” High Temp. 54, 461–465 (2016).

    Article  Google Scholar 

  97. C. Kruse, A. Tsubaki, C. Zuhlke, T. Anderson, D. Alexander, G. Gogos, and S. Ndao, “Secondary pool boiling effects,” Appl. Phys. Lett. 108, 051 602 (2016). https://doi.org/10.1063/1.4941081

    Article  Google Scholar 

  98. P. N. Saltuganov, A. A. Ionin, S. I. Kudryashov, A. A. Rukhadze, A. I. Gavrilov, S. V. Makarov, A. A. Rudenko, and D. A. Zayarny, “Fabrication of superhydrophobic coating on stainless steel surface by femtosecond laser texturing and chemisorption of an hydrophobic agent,” J. Russ. Laser Res. 36, 81–85 (2015). https://doi.org/10.1007/s10946-015-9480-5

    Article  Google Scholar 

  99. C. M. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, and S. Ndao, “Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces,” Int. J. Heat Mass Transfer 82, 109–116 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023

    Article  Google Scholar 

  100. C. V. Ngo and D. M. Chun, “Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing,” Appl. Surf. Sci. 435, 974–982 (2018). https://doi.org/10.1016/j.apsusc.2017.11.185

    Article  Google Scholar 

  101. S. Kim, H. D. Kim, H. Kim, H. S. Ahn, H. Jo, J. Kim, and M. H. Kim, “Effects of nano-fluid and surfaces with nano structure on the increase of CHF,” Exp. Therm. Fluid Sci. 34, 487–495 (2010). https://doi.org/10.1016/j.expthermflusci.2009.05.006

    Article  Google Scholar 

  102. K. H. Chu, R. Enright, and E. N. Wang, “Structured surfaces for enhanced pool boiling heat transfer,” App-l. Phys. Lett. 100, 241 603 (2012). https://doi.org/10.1063/1.4724190

    Article  Google Scholar 

  103. D. Coso, V. Srinivasan, M. C. Lu, J. Y. Chang, and A. Majumdar, “Enhanced heat transfer in biporous wicks in the thin liquid film evaporation and boiling regimes,” J. Heat Transfer 134, 101 501 (2012). https://doi.org/10.1115/1.4006106

    Article  Google Scholar 

  104. A. Zou and S. C. Maroo, “Critical height of micro/nano structures for pool boiling heat transfer enhancement,” Appl. Phys. Lett. 103, 221 602 (2013). https://doi.org/10.1063/1.4833543

    Article  Google Scholar 

  105. L. Dong, X. Quan, and P. Cheng, “An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures,” Int. J. Heat Mass Transfer 71, 189–196 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068

    Article  Google Scholar 

  106. B. S. Kim, S. Shin, S. J. Shin, K. M. Kim, and H. H. Cho, “Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area,” Nanoscale Res. Lett. (2011) 6, 333 (2011). https://doi.org/10.1186/1556-276X-6-333

    Article  Google Scholar 

  107. D. Cooke and S. G. Kandlikar, “Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels,” J. Heat Transfer 133, 163–172 (2011). https://doi.org/10.1115/FEDSM-ICNMM2010-31147

    Article  Google Scholar 

  108. M. M. Rahman, M. Olceroglu, and M. McCarthy, “Role of wickability on the critical heat flux of structured superhydrophilic surfaces,” Langmuir 30, 11225–11234 (2014).

    Article  Google Scholar 

  109. N. S. Dhillon, J. Buongiorno, and K. K. Varanasi, “Critical heat flux maxima during boiling crisis on textured surfaces,” Nature Commun. 6, 8247 (2015).

    Article  Google Scholar 

  110. L. A. Sukomel and V. V. Yagov, “Possibilities for increasing critical heat fluxes during boiling on surfaces with porous coatings (review),” Vestn. Mosk. Energ. Inst., No. 4, 55–67 (2017).

  111. S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” J. Heat Transfer 123, 1071–1079 (2001). https://doi.org/10.1115/1.1409265

    Article  Google Scholar 

  112. R. Li and Z. Huang, “A new CHF model for enhanced pool boiling heat transfer on surfaces with micro-scale roughness,” Int. J. Heat Mass Transfer 109, 1084–1093 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.089

    Article  Google Scholar 

  113. S. D. Park and I. C. Bang, “Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability,” Int. J. Heat Mass Transfer 70, 844–850 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.066

    Article  Google Scholar 

  114. S. H. Kim, G. C. Lee, J. Y. Kang, K. Moriyama, M. H. Kim, and H. S. Park, “Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface,” Int. J. Heat Mass Transfer 91, 1140–1147 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.120

    Article  Google Scholar 

  115. D. I. Shim, G. Choi, N. Lee, T. Kim, B. S. Kim, and H. H. Cho, “Enhancement of pool boiling heat transfer using aligned silicon nanowire arrays,” ACS Appl. Mater. Interfaces 9, 17 595–17 602 (2017). https://doi.org/10.1021/acsami.7b01929

    Article  Google Scholar 

  116. Y. Song, Y. Zhu, D. Preston, H. Cho, Z. Lu, and E. Wang, “Investigating the relationship between surface wickability and critical heat flux during pool boiling,” in Proc. 16th Int. Heat Transfer Conf. (IHTC-16), Beijing, China, Aug. 10–15,2018 (Begell House, Danbury, CT, 2018), id. IHTC16-23315.

  117. I. A. Khaziev, A. V. Dedov, and S. D. Fedorovich, “Research wetting and Leidenfrost effects on structured surfaces in contact with water,” J. Phys.: Conf. Ser. 891, 012 021 (2017). https://doi.org/10.1088/1742-6596/891/1/012021

    Article  Google Scholar 

  118. A. Jaikumar and S. G. Kandlikar, “Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels,” Int. J. Heat Mass Transfer 95, 795–805 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.061

    Article  Google Scholar 

  119. A. Jaikumar and S. G. Kandlikar, “Pool boiling inversion through bubble induced macroconvection,” Appl. Phys. Lett. 110, 094 107 (2017). https://doi.org/10.1063/1.4941032

    Article  Google Scholar 

  120. M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Transfer Eng. 38, 1285–1295 (2017). https://doi.org/10.1080/01457632.2016.1242961

    Article  Google Scholar 

  121. A. R. Betz, J. Jenkins, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transfer 57, 733–741 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.080

    Article  Google Scholar 

  122. C.-H. Choi, M. David, Z. Gao, A. Chang, M. Allen, H. Wang, and C.-H. Chang, “Large-scale generation of patterned bubble arrays on printed bi-functional boiling surfaces,” Sci. Rep. 6, 23 760 (2016).

    Article  Google Scholar 

  123. B. J. Suroto, M. Tashiro, S. Hirabayashi, S. Hidaka, M. Kohno, and Y. Takata, “Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface,” J. Therm. Sci. Technol. 8, 294–308 (2013).

    Article  Google Scholar 

  124. S. Kumar, G. Kumar, M. Arenales, C.-C. Hsu, and P. Chen, “Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings,” Appl. Therm. Eng. 137, 868–891 (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.092

    Article  Google Scholar 

  125. M. M. Rahman, J. Pollack, and M. McCarthy, “Increasing boiling heat transfer using low conductivity materials,” Sci. Rep. 5, 13 145 (2015). https://doi.org/10.1038/srep13145

    Article  Google Scholar 

  126. A. Fazeli, S. Bigham, and S. Moghaddam, “Microscale layering of liquid and vapor phases within microstructures for a new generation two-phase heat sink,” Int. J. Heat Mass Transfer 95, 368–378 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.005

    Article  Google Scholar 

  127. A. V. Belyaev, A. N. Varava, A. V. Dedov, and A. T. Komov, “Critical heat flux at flow boiling of refrigerants in minichannels at high reduced pressure,” Int. J. Heat Mass Transfer 122, 732–739 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.027

    Article  Google Scholar 

  128. A. V. Belyaev, A. N. Varava, A. V. Dedov, and A. T. Komov, “An experimental study of flow boiling in minichannels at high reduced pressure,” Int. J. Heat Mass Transfer 110, 360–373 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.045

    Article  Google Scholar 

  129. X. Fang, Y. Yuan, A. Xu, L. Tian, and Q. Wu, “Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water,” Fusion Eng. Des. 122, 52–63 (2017). https://doi.org/10.1016/j.fusengdes.2017.09.008

    Article  Google Scholar 

  130. G. Zhu, Q. Bi, J. Yan, and H. Lv, “Experimental study of subcooled flow boiling heat transfer of water in a circular channel under one-side heating conditions,” Int. J. Heat Mass Transfer 119, 484–495 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.111

    Article  Google Scholar 

  131. A. Richenderfer, A. Kossolapov, J. Seong, G. Saccone, E. Demarly, R. Kommajosyula, E. Baglietto, J. Buongiorno, and M. Bucci, “Investigation of subcooled flow boiling and CHF using high-resolution diagnostics,” Exp. Therm. Fuild Sci. 99, 35–58 (2018). https://doi.org/10.1016/j.expthermflusci.2018.07.017

    Article  Google Scholar 

  132. L. Yin, R. Xu, P. Jiang, H. Cai, and L. Jia, “Subcooled flow boiling of water in a large aspect ratio microchannel,” Int. J. Heat Mass Transfer 112, 1081–1089 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.028

    Article  Google Scholar 

  133. A. S. Shamirzaev, A. S. Mordovskoy, and V. V. Kuznetsov, “An experimental investigation of flow boiling heat transfer for water and refrigerants in microchannel heat exchangers,” AIP Conf. Proc. 1939, 020 040 (2018). https://doi.org/10.1063/1.5027352

    Article  Google Scholar 

  134. D. C. Groeneveld, L. K. H. Leung, P. L. Kirillov, V. P. Bobkov, I. P. Smogalev, V. N. Vinogradov, X. C. Huangc, and E. Royerd, “The 1995 look-up table for critical heat flux in tubes,” Nucl. Eng. Des. 163, 1–23 (1996). https://doi.org/10.1016/0029-5493(95)01154-4

    Article  Google Scholar 

  135. A. N. Varava, A. V. Dedov, A. T. Komov, and S. A. Malakhovskii, “Experimental investigation of critical heat flux under boiling in subcooled swirling flow under conditions of one-sided heating,” High Temp. 47, 843–848 (2009).

    Article  Google Scholar 

  136. I. Mudawar and M. B. Bowers, “Ultra-high critical heat flux for subcooled water flow boiling – I: CHF data and parametric effects for small diameter tubes,” Int. J. Heat Mass Transfer 42, 1405–1428 (1999). https://doi.org/10.1016/S0017-9310(98)00241-5

    Article  Google Scholar 

  137. A. V. Dedov, “Peculiarities of boiling in subcooled flow,” Therm. Eng. 56, 691–699 (2009).

    Article  Google Scholar 

  138. A. V. Dedov, A. T. Komov, A. N. Varava, and V. V. Yagov, “Hydrodynamics and heat transfer in swirl flow under conditions of one-side heating. Part 2: Boiling heat transfer. Critical heat fluxes,” Int. J. Heat Mass Transfer 53, 4966 –4975 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.035

    Article  Google Scholar 

  139. V. V. Yagov and V. A. Puzin, “Boiling crisis in conditions of forced motion of subcooled liquid,” Teploenergetika, No. 10, 52–54 (1985).

    Google Scholar 

  140. A. A. Avdeev, “Reynolds analogy for undeveloped surface boiling in forced motion conditions,” Teploenergetika, No. 3, 23–26 (1982).

    Google Scholar 

  141. Yu. A. Zeigarnik, “Regenerated boiling and enhancement of heat transfer,” High Temp. 39, 447–454 (2001).

    Article  Google Scholar 

  142. A. V. Dedov, “Critical heat flowrates in subcooled flow boiling,” Therm. Eng. 57, 185–192 (2010).

    Article  Google Scholar 

  143. O. A. Kabov, Yu. V. Lyulin, I. V. Marchuk, and D. V. Zaitsev, “Locally heated shear-driven liquid films in microchannels and minichannels,” Int. J. Heat Fluid Flow 28, 103–112 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.05.010

    Article  Google Scholar 

  144. E. Tkachenko, D. Zaitsev, E. Orlik, and O. Kabov, “Critical heat flux in locally heated liquid film moving under the action of gas flow in a mini-channel,” J. Phys.: Conf. Ser. 754, 032 019 (2016). https://doi.org/10.1088/1742-6596/754/3/032019

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (grant no. 19-19-00410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dedov.

Additional information

Translated by V. Filatov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedov, A.V. A Review of Modern Methods for Enhancing Nucleate Boiling Heat Transfer. Therm. Eng. 66, 881–915 (2019). https://doi.org/10.1134/S0040601519120012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601519120012

Keywords:

Navigation