Skip to main content

Nucleate Pool Boiling

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Nucleate boiling is a very efficient mode of heat transfer. In this chapter, a mechanistic description of nucleate boiling on solid surfaces is presented. The description includes determination of wall superheat necessary for bubbles to nucleate on defects or cavities present on the heater surface; number density of active nucleation sites; bubble dynamics including bubble growth, merger, and departure; bubble growth period, waiting time, and frequency of bubble release; influence of substrate thickness and its thermophysical properties; and various heat transfer mechanisms such as transient conduction into liquid, natural convection, evaporation underneath the bubbles and on vapor-liquid interfaces as well as thermo-capillary convection. Effect of such variables as surface wettability, heater geometry, surface roughness, liquid subcooling, system pressure, and level of gravity on the rate of nucleate boiling heat transfer is described. Correlations available in the literature describing dependence of wall heat flux on wall superheat are also given. Maximum, peak, critical, or burnout heat flux represents the upper limit of nucleate boiling heat flux. Hydrodynamic theory and other approaches for prediction of maximum heat flux are discussed. Effect of various system variables on maximum heat flux including reduced gravity is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Hamaker constant

B o :

Bond number

b :

Constant

C :

Constant

c p :

Specific heat (J/kg K)

D :

Diameter (mm)

D c :

Cavity diameter (μm)

D d :

Bubble departure diameter (mm)

D s :

Diameter of largest cavity present on the surface (μm)

f 1, f 2 :

__________ of contact angle

f :

Frequency of bubble release (Number/s)

g :

Gravitational acceleration (m/s2)

g e :

Earth normal gravitational acceleration (m/s2)

h :

Heat transfer coefficient (W/m2K)

h fg :

Latent heat of vaporization (J/kg)

Ja :

Jakob number

K :

Nondimensional curvature

k :

Thermal conductivity (W/mK)

m :

Exponent

N a :

Number density of active cavities (Sites/cm2)

N as :

Number density of cavities with mouth angle less than a specified value (Sites/cm2)

N s :

Number density of cavities presents on the surface (Sites/cm2)

Nu :

Nusselt number

n :

Exponent

p :

Pressure (kPa)

Pr :

Prandtl number

p c :

Critical pressure (kPa)

q :

Heat flux (W/m2)

q w :

Wall heat flux (W/m2)

R :

Radius (mm)

R’ :

Dimensionless radius

T :

Temperature (K)

T l :

Liquid temperature (K)

T sat :

Saturation temperature (K)

T w :

Wall temperature (K)

t :

Time (sec)

V * :

Nondimensional volume

y :

Distance normal to the surface (mm)

α :

Thermal diffusivity (m2/s)

β :

Wedge angle

T:

Temperature difference (K)

δ :

Film thickness (mm)

θ :

Angle of inclination (Degrees)

λ f :

Most dangerous Taylor wavelength (mm)

μ :

Viscosity (Kg/ms)

ν :

Kinetic viscosity (m2/s)

ρ :

Density (Kg/m3)

σ :

Surface tension (N/m)

Φ :

Contact angle (Degrees)

b:

Bubble or bulk

c:

Critical or cavity

e:

Earth

ev:

Evaporative

g:

Growth

in:

Inception

l:

Liquid

max:

Maximum

min:

Minimum

nc:

Natural convection

sat:

Saturation

sub:

Subcooling

v:

Vapor

w:

Wall or waiting

References

  • Aktinol E, Dhir VK (2012) Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid. Microgravity Sci Tecnol 24:255–265

    Article  Google Scholar 

  • Aktinol E, Dhir VK (2014) Numerical simulation of the effect of contact angle on the thermal response of the solid during nucleate pool boiling. Interfacial Phenom Heat Tran 2:4

    Google Scholar 

  • Aktinol E, Warrier GR, Dhir VK (2014) Single bubble dynamics under microgravity conditions in presence of dissolved gas in the Liquid. Int J Heat Mass Transf 79:251–268

    Article  Google Scholar 

  • Ammerman CN, You SM, Hong YS (1996) Identification of pool boiling heat transfer from a wire immersed in saturated FC-72 using a simple/LDA method. J. Heat Tran 118:117–123

    Article  Google Scholar 

  • Bankoff SG (1958) Entrapment of gas in the spreading of liquid over a rough surface. AICHE J 4:24–26

    Article  Google Scholar 

  • Basu N, Warrier GR, Dhir VK (2002) Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J Heat Transfer 124:717–728

    Article  Google Scholar 

  • Basu N, Warrier GR, Dhir VK (2005) Wall heat flux partitioning during subcooled flow boiling Part I- model development. J Heat Transf 127:131–140

    Article  Google Scholar 

  • Bier K, Gorenflow D, Salem M, Tanes Y (1978) Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness, volume 1. In: Proceedings of the 6th international heat transfer conference, Toronto, pp 151–156

    Google Scholar 

  • Cole R, Rohsenow WM (1969) Correlations for bubbles departure diameters for boiling of saturated liquids. Chem Eng Prog 65:211–213

    Google Scholar 

  • Cooper MG (1984) Saturation nucleate pool boiling – a simple correlation. IChemE Symposium Series 86:789–793

    Google Scholar 

  • Cornwell K, Brown RD (1978) Boiling surface topography, volume 1. In: Proceedings of the 6th international heat transfer conference, Toronto, pp 157–161

    Google Scholar 

  • Cornwell R, Einarsson JG (1989) The influence of fluid flow on nucleate boiling from a tube. In: Proceedings of European seminar, no. 8: on advances in pool boiling heat transfer. University of Paderborn, Paderborn, 11–12 May 1989, pp 28–41

    Google Scholar 

  • Costello CP, Frea WJ (1965) A salient nonhydrodynamic effect on pool boiling burnout of small semicylindrical heaters. AIChE Chem Eng Prog Symp Ser 61(57):258–268

    Google Scholar 

  • Dhir VK (2015) Nucleate pool boiling under reduced gravity conditions-role of numerical simulations. Adv Heat Tran 47:167–201

    Article  Google Scholar 

  • Dhir VK, Liaw SP (1989) Framework for a unified model for nucleate and transition pool boiling. J Heat Transf 111:739–746

    Article  Google Scholar 

  • Dhir VK, Lienhard JH (1974) Peak pool boiling heat flux in viscous liquids. J Heat Transf 96:71–78

    Article  Google Scholar 

  • Elkassabgi Y, Lienhard JH (1988) Influences of subcooling on burnout of horizontal cylindrical heaters. J Heat Transf 110:479–486

    Article  Google Scholar 

  • Fritz W (1935) Maximum volume of vapor bubbles. Phys Z 36:379–384

    Google Scholar 

  • Gaertner RF (1965) Photographic study of nucleate pool boiling on a horizontal surface. ASME J Heat Transf 87:17–29

    Article  Google Scholar 

  • Gorenflo D, Knabe V, Beiling V (1986) Bubble density on surfaces with nucleate boiling – its influence on heat transfer and burnout heat flux at elevated saturation pressures. In: Proceedings of the 8th international heat transfer conference, vol 4. Hemisphere Publishing Corp, San Francisco, Washington, DC, Aug 1986, pp 1995–2000

    Google Scholar 

  • Griffith P, Wallis JD (1960) The role of surface conditions in nucleate boiling. Chemical Engineering Proj Symposium, Ser 56(30):49–63

    Google Scholar 

  • Han CY, Griffith P (1965) The mechanism of heat transfer in nucleate pool boiling. Part I, bubble initiation, growth, and departure. Int J Heat Mass Transf 8:887–904

    Article  Google Scholar 

  • Haramura Y (1991) Steady state pool transition boiling heated with condensing steam. Proc ASME/JSME Therm Eng Joint Conf 2:59–64

    Google Scholar 

  • Haramura Y, Katto Y (1983) New hydrodynamic model of critical heat flux applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int J Heat Mass Transf 26:379–399

    Article  Google Scholar 

  • Houchin WR, Lienhard JH (1966) Boiling burnout in low thermal capacity heater. In: Proceedings of ASME winter annual meeting (heat transfer), pp 1–8

    Google Scholar 

  • Hsu YY (1962) On the size of range of active nucleation sites on a heating surface. J Heat Transf 84:207–216

    Article  Google Scholar 

  • Hsu YY, Graham RW (1976) Transport processes in boiling and two phase systems. Hemisphere Publishing Corp, Washington, DC

    Google Scholar 

  • Judd RL, Hwang KS (1976) A comprehensive model for nucleate boiling heat transfer including microlayer evaporation. J Heat Transf 98:623–629

    Article  Google Scholar 

  • Kandlikar S, Shoji M, Dhir VK (1999) Handbook of phase change-boiling and condensation. Taylor and Francis Publishers, Philadelphia, PA

    Google Scholar 

  • Katto Y, Yokoya S (1968) Principal mechanism of boiling crisis in pool boiling. Int J Heat Mass Transf 11:993–1002

    Article  Google Scholar 

  • Kocamustafagoullari G, Ishii M (1983) Interfacial area and nucleation site density in boiling system. Int J Heat Mass Transf 26:1377–1387

    Article  Google Scholar 

  • Kutateladze SS (1952) Heat transfer in condensation and boiling. US AEC Report AECU-3770

    Google Scholar 

  • Lay JH, Dhir VK (1994) A nearly theoretical model for fully developed nucleate boiling of saturated liquids, volume 5. In: Proceedings of the 10th international heat transfer conference, Brighton, pp 105–110

    Google Scholar 

  • Liaw SP, Dhir VK (1986) Effect of surface wettability on transition boiling heat transfer from a vertical surface. In: Proceedings of 8th international heat transfer conference, vol 4, pp 2031–2036

    Google Scholar 

  • Liaw SP, Dhir VK (1989) Void fraction measurement during saturated pool boiling of water on partially wetted vertical surfaces. ASME J Heat Transf 111:731–738

    Article  Google Scholar 

  • Lienhard JH, Dhir VK (1973) Hydrodynamic prediction of peak pool-boiling heat fluxes from finite bodies. J Heat Transf 95:152–158

    Article  Google Scholar 

  • Lienhard JH, Dhir VK, Riherd DM (1973) Peak pool boiling heat-flux measurements on finite horizontal flat plates. J Heat Transf 95:477–482

    Article  Google Scholar 

  • Malenkov IG (1971) Detachment frequency as a function of size of vapor bubbles. Translated Inzh Fiz Zhur 20:99

    Google Scholar 

  • Mikic BB, Rohsenow WM (1969a) Bubble growth rates in non-uniform temperature field. Prog Heat Mass Transf II:283–293

    Google Scholar 

  • Mikic BB, Rohsenow WM (1969b) A new correlation of pool boiling data, including the effect of heating surface characteristics. J Heat Transf 9:245–250

    Article  Google Scholar 

  • Mikic BB, Rohsenow VM, Griffith P (1970) On bubble growth rates. Int J Heat Mass Transf 13:647–666

    Article  Google Scholar 

  • Mizukami K (1975) Entrapment of vapor in re-entrant cavities. Lett Heat Mass Transf 2:279–284

    Article  Google Scholar 

  • Moghaddam S, Kiger K (2009) Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-I. Experimental investigation. Int J Heat Mass Transf 52:1284–1294

    Article  Google Scholar 

  • Moore FD, Mesler RB (1961) The measurement of rapid surface temperature fluctuations during nucleate boiling of water. AICHE J 7:620–624

    Article  Google Scholar 

  • Mukherjee A, Dhir VK (2004) Study of lateral merger of vapor bubbles during nucleate pool boiling. J Heat Transfer 126:1023–1039

    Article  Google Scholar 

  • Nishikawa K, Fujita Y, Ohta H (1984) Effect of surface configuration on nucleate boiling heat transfer. Int J Heat Mass Transf 7:620–624

    Google Scholar 

  • Nishio S (1985) Stability of pre-existing vapor nucleus in uniform temperature field. Trans JSME Ser B 54(503):1802–1807

    Article  Google Scholar 

  • Paul DD, Abdel-Khalik SI (1983) A statistical analysis of saturate nucleate boiling along a pleated wire. Int J Heat Transf 26:509–519

    Article  Google Scholar 

  • Pesse AV, Warrier GR, Dhir VK (2005) An experimental study of the gas entrapment process in closed-end microchannels. Int J Heat Mass Transf 48:5150–5165

    Article  Google Scholar 

  • Plesset MS, Zwick SA (1954) Growth of vapor bubbles in superheated liquids. J App Phys 25:493–500

    Article  MathSciNet  Google Scholar 

  • Qiu DM, Dhir VK, Hasan MM, Chao D (2000) Single and multiple bubble dynamics during nucleate boiling under low gravity conditions. In: Proceedings of the 34th national heat transfer conference

    Google Scholar 

  • Rohsenow WM (1952) A method of correlation heat transfer data for surface boiling of liquids. Trans ASME 74:969–976

    Google Scholar 

  • Ross TK (1967) Corrosion and heat transfer review. Corros J 2:131–142

    Article  Google Scholar 

  • Shoji M, Yoshihara M (1991) Burnout heat flux of water on a thin wire (effect of diameter and subcooling). In: Proceedings of 28th National heat transfer symposium of Japan, pp 121–123

    Google Scholar 

  • Siegel R, Keshock EG (1964) Effect of reduced gravity on nucleate boiling bubble dynamics in saturated water. AIChE J 10:509–517

    Article  Google Scholar 

  • Snyder NR, Edwards DK (1956) Summary of conference on bubble dynamics and boiling heat transfer. Memo 20–137, Jet Propulsion Laboratory, Pasadena, pp 14–15

    Google Scholar 

  • Son G, Dhir VK (2008) Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int J Heat Mass Transf 51:2566–2582

    Article  Google Scholar 

  • Son G, Ramanujapu NK, Dhir VK (2002) Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling. J Heat Transfer 124:51–62

    Article  Google Scholar 

  • Son G, Dhir VK, Ramanujapu N (1999) Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J Heat Transf 121:623–631

    Article  Google Scholar 

  • Stephan K, Adbelsalam M (1980) Heat transfer correlation for natural convection boiling. Intl J Heat Mass Transf 23:73–87

    Article  Google Scholar 

  • Straub J (2001) Boiling heat transfer and bubble dynamics in microgravity. Adv Heat Tran 35:57–172

    Article  Google Scholar 

  • Talhibana P, Akiyama M, Kawamura H (1967) Non-hydrodynamic aspects of pool boiling burnout. J Nucl Sci Tech 4:121–130

    Article  Google Scholar 

  • Wang CH, Dhir VK (1993a) On the gas entrapment and nucleation site density during pool boiling of saturate water. J Heat Transf 115:670–679

    Article  Google Scholar 

  • Wang CH, Dhir VK (1993b) Effect of surface wettability on active nucleation site density during pool boiling of saturated water. J Heat Transf 115:659–669

    Article  Google Scholar 

  • Ward CA, Forest TW (1976) On the relation between platelet adhesion and the roughness of a synthetic biomaterial. Ann Biomed Eng 4:184–207

    Article  Google Scholar 

  • Warrier GR, Dhir VK, Chao DF (2015) Nucleate pool boiling experiment (NPBX) in microgravity: international Space Station. Int J Heat Mass Transf 83:781–798

    Article  Google Scholar 

  • Zuber N (1959) Hydrodynamic aspects of boiling heat transfer, U.S. AEC report no. AECU-4439. Phys Math

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Dhir .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dhir, V.K. (2018). Nucleate Pool Boiling. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_41

Download citation

Publish with us

Policies and ethics