Skip to main content
Log in

Effect of Hydrodynamic Conditions on Micromixing in Impinging-Jets Microreactors

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Micromixing was experimentally studied by the iodide–iodate technique in a free impinging-jets microreactor (FIJMR) with differentiated sampling and in a laboratory reactor with a magnetic stirrer. In the latter case, the quality of micromixing was extremely low (segregation index Xs = 0.52 ± 0.03). Micromixing was studied at different jet diameters (dj = 0.55, 1.0, and 2.0 mm), distances from the nozzle exit to the collision point (L = 5, 20, and 40 mm), and liquid flow rates. The jet diameter and the distance from the nozzle exit to the collision point have a significant effect on the quality of micromixing. At relatively low Weber numbers (We < 2000) and at L/dj ≈ 73, the so-called “varicose” instability of jets appears, as a result of which the jets break up into drops before the moment of collision. At We > 2000, the jet stabilizes due to an increase in the kinetic energy. At We = 6000, Xs for L = 40 mm becomes the same as for L = 5 mm. For aqueous solutions, the optimum diameter is 1 mm as it provides relatively high performance with a high quality of micromixing, while the dispersion of droplets and filaments to the periphery is minimum (or absent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Stankiewicz, A.I. and Moulijn, J.A., Process intensification: Transforming chemical engineering Chem. Eng. Prog., 2000, vol. 96, pp. 22–33.

    CAS  Google Scholar 

  2. Abiev R.Sh., Impinging-jets micromixers and microreactors: State of art and prospects for use in the chemical technology of nanomaterials (Review), Theor. Found. Chem. Eng., 2020, vol. 54, pp. 1131–1147. https://doi.org/10.1134/S0040579520060019

    Article  CAS  Google Scholar 

  3. Ravi Kumar, D.V., Prasad, B.L.V., and Kulkarni, A A., Impinging jet micromixer for flow synthesis of nanocrystalline MgO: Role of mixing/impingement zone, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 17376–17382. https://doi.org/10.1021/ie402012x

    Article  CAS  Google Scholar 

  4. Liu, Y., Cheng, C., Liu, Y., Prud’homme, R.K., and Fox, R.O., Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation, Chem. Eng. Sci., 2008, vol. 63, pp. 2829–2842. https://doi.org/10.1016/j.ces.2007.10.020

    Article  CAS  Google Scholar 

  5. Pal, S., Madane, K., and Kulkarni, A.A., Antisolvent based precipitation: Batch, capillary flow reactor and impinging jet reactor. Chem. Eng. J., 2019, vol. 369, pp. 1161–1171. https://doi.org/10.1016/j.cej.2019.03.107

    Article  CAS  Google Scholar 

  6. Nightingale, A.M. and DeMello, J.C., Segmented flow reactors for nanocrystal synthesis. Adv. Mater., 2013, vol. 25, pp. 1813–1821. https://doi.org/10.1002/adma.201203252

    Article  CAS  PubMed  Google Scholar 

  7. Kurt, S.K., Akhtar, M., Nigam, K.D.P., and Kockmann, N., Continuous reactive precipitation in a coiled flow inverter: Inert particle tracking, modular design, and production of uniform CaCO3 particles, Ind. Eng. Chem. Res., 2017, vol. 56, pp. 11320–11335. https://doi.org/10.1021/acs.iecr.7b02240

    Article  CAS  Google Scholar 

  8. Johnson, B.K. and Prud’homme, R.K., Chemical processing and micromixing in confined impinging jets, AIChE J., 2003, vol. 49, pp. 2264–2282. https://doi.org/10.1002/aic.690490905

    Article  CAS  Google Scholar 

  9. Abiev, R.S. Al’myasheva, O.V., Gusarov, V.V., and Izotova, S.G., RF Patent 2625981, Method of producing nanopowder of cobalt ferrite and microreactor to this end, Byull. Izobret., 2017, no. 20.

  10. Tacsi, K., Joó, A., Pusztai, E., Domokos, A., Nagy, Z.K., Marosi, G., and Pataki, H., Development of a triple impinging jet mixer for continuous antisolvent crystallization of acetylsalicylic acid reaction mixture, Chem. Eng. Proc.: Proc. Intens., 2021, vol. 165, p. 108446. https://doi.org/10.1016/j.cep.2021.108446

    Article  CAS  Google Scholar 

  11. Gavi, E., Marchisio, D., and Barresi, A., On the importance of mixing for the production of nanoparticles, J. Dispersion Sci. Technol., 2008, vol. 29, pp. 548–554.

    Article  CAS  Google Scholar 

  12. Marchisio, D.L., Rivautella, L., and Barresi, A.A., Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J., 2006, vol. 52, pp. 1877–1887.

    Article  CAS  Google Scholar 

  13. Krupa, K., Nunes, M.I., Santos, R.J., and Bourne, J.R., Characterization of micromixing in T-jet mixers, Chem. Eng. Sci., 2014, vol. 111, pp. 48–55.

    Article  CAS  Google Scholar 

  14. Metzger, L. and Kind, M., On the transient flow characteristics in confined impinging jet mixers-CFD simulation and experimental validation, Chem. Eng. Sci., 2015, vol. 133, pp. 91–105.

    Article  CAS  Google Scholar 

  15. Deshpande, J. B., Chakrabarty, S., and Kulkarni, A.A., Heterogeneous nucleation in citrate synthesis of AgNPs: Effect of mixing and solvation dynamics, Chem. Eng. J., 2021, vol. 421, p. 127753.

    Article  CAS  Google Scholar 

  16. Teychené, S., Rodríguez-Ruiz, I., and Ramamoorthy, R.K., Reactive crystallization: From mixing to control of kinetics by additives. Curr. Opin. Colloid Interface Sci., 2019, vol. 146, pp. 1–19. https://doi.org/10.1016/j.cocis.2020.01.003

    Article  CAS  Google Scholar 

  17. Johnson, B.K. and Prud’homme, R.K., Chemical processing and micromixing in confined impinging jets, AIChE J., 2003, vol. 49, pp. 2264–2282.

    Article  CAS  Google Scholar 

  18. Proskurina, O.V., Abiev, R.S., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., Nevedomsky, V.N., and Gusarov, V.V., Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor, Chem. Eng. Proc.: Proc. Intens., 2019, vol. 143, p. 108446. https://doi.org/10.1016/j.cep.2019.107598

    Article  CAS  Google Scholar 

  19. Proskurina, O.V., Nogovitsin, I.V., Il’ina, T.S., Danilovich, D.P., Abiev, R.Sh., and Gusarov, V.V., Formation of BiFeO3 nanoparticles using impinging jets microreactor, Russ. J. Gen. Chem., 2018, vol. 88, pp. 2139–2143. https://doi.org/10.1134/S1070363218100183

    Article  CAS  Google Scholar 

  20. Proskurina, O.V., Sivtsov, E.V., Enikeeva, M.O., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Formation of rhabdophane structured lanthanum orthophosphate nanoparticles in an impinging jets microreactor and rheological properties of sols based on them, Nanosyst.: Phys., Chem., Math., 2019, vol. 10, pp. 206–214. https://doi.org/10.17586/222080542019102206214

    Article  CAS  Google Scholar 

  21. Park, J.I., Saffari, A., Kumar, S., Günther, A., and Kumacheva, E., Microfluidic synthesis of polymer and inorganic particulate materials. Annu. Rev. Mater. Res., 2010, vol. 40, pp. 415–443.

    Article  CAS  Google Scholar 

  22. Kudryashova, Yu.S., Zdravkov, A.V., Ugolkov, V.L., and Abiev, R.Sh. Preparation of photocatalizers based on titanium dioxide synthesized using a microreactor with colliding jets, Glass Phys. Chem., 2020, vol. 46, pp. 335–340. https://doi.org/10.1134/S1087659620040082

    Article  CAS  Google Scholar 

  23. Zdravkov, A.V., Kudryashova, Yu.S., and Abiev, R.Sh., Synthesis of titanium oxide doped with neodymium oxide in a confined impinging jets reactor, Russ. J. Gen. Chem., 2020, vol. 90, pp. 1677–1680. https://doi.org/10.1134/S1070363220090145

    Article  CAS  Google Scholar 

  24. Kudryashova, Yu.S., Zdravkov, A.V., and Abiev, R.Sh., Synthesis of yttrium–aluminum garnet using a microreactor with impinging jets, Glass Phys. Chem., 2021, vol. 47, pp. 260–264. https://doi.org/10.1134/S108765962103007X

    Article  CAS  Google Scholar 

  25. Abiev, R.Sh., Proskurina, O.V., Enikeeva, M.O., and Gusarov, V.V., Effect of hydrodynamic conditions in an impinging-jet microreactor on the formation of nanoparticles based on complex oxides, Theor. Found. Chem. Eng., 2021, vol. 55, pp. 12–29. https://doi.org/10.1134/S0040579521010012

    Article  CAS  Google Scholar 

  26. Proskurina, O.V., Sokolova, A.N., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 163–169. https://doi.org/10.1134/S0036023621020157

    Article  CAS  Google Scholar 

  27. Albadi, Ya., Sirotkin, A.A., Semenov, V.G., Abiev, R.Sh., and Popkov, V.I., Albadi, Y., Sirotkin, A.A., Semenov, V.G., Abiev, R.S., and Popkov V.I., Synthesis of superparamagnetic GdFeO3 nanoparticles using a free impinging-jets microreactor, Russ. Chem. Bull., Int. Ed., 2020, vol. 69, no. 7, pp. 1290–1295. https://doi.org/10.1007/s11172-020-2900-x

    Article  CAS  Google Scholar 

  28. Albadi, Y., Ivanova, M.S., Grunin, L.Y., Martinson, K.D., Chebanenko, M.I., Izotova, S.G., Nevedomskiy, V.N., Abiev, R.S., and Popkov, V.I., The influence of co-precipitation technique on the structure, morphology and dual-modal proton relaxivity of GdFeO3 nanoparticles, Inorganics, 2021, vol. 9, Article 39. https://doi.org/10.3390/inorganics9050039

    Article  CAS  Google Scholar 

  29. Albadi, Y., Abiev, R.S., Sirotkin, A.A., Martinson, K.D., Chebanenko, M.I., Nevedomskyi, V.N., Buryanenko, I.V., Semenov, V.G., and Popkov, V.I., Physicochemical and hydrodynamic aspects of GdFeO3 production using a free impinging-jets methods, Chem. Eng. Proc., 2021, vol. 166, p. 108473. https://doi.org/10.1016/j.cep.2021.108473

    Article  CAS  Google Scholar 

  30. Fournier, C., Falk, L., and Villermaux, J., A new parallel competing reaction system for assessing micromixing efficiency—experimental approach. Chem. Eng. Sci., 1996, vol. 22, pp. 5053–5064.

    Article  Google Scholar 

  31. Jasińska, M., Test reactions to study efficiency of mixing, Chem. Proc. Eng., 2015, vol. 36, pp. 171–208.

    Article  Google Scholar 

  32. Falk, L. and Commenge, J.-M., Performance comparison of micromixers, Chem. Eng. Sci., 2010, vol. 65, pp. 405–411. https://doi.org/10.1016/j.ces.2009.05.045

    Article  CAS  Google Scholar 

  33. Commenge, J.-M. and Falk, L., Villermaux–Dushman protocol for experimental characterization of micromixers. Chem. Eng. Proc., 2011, vol. 50, pp. 979–990. https://doi.org/10.1016/j.cep.2011.06.006

    Article  CAS  Google Scholar 

  34. Guichardon, P. and Falk, L., Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: Experimental procedure, Chem. Eng. Sci., 2000, vol. 55, pp. 4233–4243. https://doi.org/10.1016/S0009-2509(00)00068-3

    Article  CAS  Google Scholar 

  35. Guichardon, P., Falk, P., and Villermaux, J., Characterisation of mixing efficiency by the iodide/iodate reaction system. Part II. Kinetic study, Chem. Eng. Sci., 2000, vol. 55, pp. 4243–4245. https://doi.org/10.1016/S0009-2509(00)00069-5

    Article  Google Scholar 

  36. Villermaux, J., Micromixing phenomena in stirred reactors, Encyclopedia of fluid mechanics, Houston: Gulf Publishing Company, 1986.

    Google Scholar 

  37. Li, R. and Ashgriz, N., Characteristics of liquid sheets formed by two impinging jets, Phys. Fluids, 2006, vol. 18, p. 087104. https://doi.org/10.1063/1.2338064

    Article  CAS  Google Scholar 

  38. Handbook of Atomization and Sprays, Ed. by N. Ashgriz, Toronto: Springer Science + Business Media, LLC, 2011, Ch. 30, p. 685. .https://doi.org/10.1007/978-1-4419-7264-4-30

  39. Taylor, G.I., The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. Roy. Soc. A, 1959, vol. 253, p. 313. https://doi.org/10.1098/rspa.1959.0196

    Article  Google Scholar 

  40. Faber, T.E., Fluid Dynamics for Physicists, Cambridge: Cambridge University Press, 1995.

    Book  Google Scholar 

  41. Choo, Y.-J. and Kang, B.-S., The velocity distribution of the liquid sheet formed by two low-speed impinging jets, Phys. Fluids, 2002, vol. 14, pp. 622–627. https://doi.org/10.1063/1.1429250

    Article  CAS  Google Scholar 

  42. Choo, Y. and Kang, B., A study on the velocity characteristics of the liquid elements produced by two impinging jets, Exp, Fluids, 2003, vol. 34, pp. 655–661. https://doi.org/10.1007/s00348-002-0554-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.V. Makusheva for assistance with studies of micromixing in a laboratory reactor in the form of a conical flask.

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 19-33-90299 “Postgraduate students”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S., Sirotkin, A.A. Effect of Hydrodynamic Conditions on Micromixing in Impinging-Jets Microreactors. Theor Found Chem Eng 56, 9–22 (2022). https://doi.org/10.1134/S0040579522010018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522010018

Keywords:

Navigation