Skip to main content
Log in

Effect of Hydrodynamic Conditions in an Impinging-Jet Microreactor on the Formation of Nanoparticles Based on Complex Oxides

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of the hydrodynamic situation (mainly conditions of mixing of the solutions of the reagents) on the composition and sizes of the nanoparticles being formed in an impinging-jet microreactor (IJMR) upon the impinging of the jets of the reagents—aqueous solutions of lanthanum nitrate and ammonium dihydrogen phosphate—is studied. Unique conditions are generated in the IJMR providing a short-term contact of the jets of the solutions that move at a high velocity (of about 10–20 m/s). The characteristics of turbulence in the IJMR are calculated. It is shown that the rate of dissipation of turbulent kinetic energy in the zone of impinging of the jets may reach 107–109 W/kg, which is comparable to the level of dissipation of energy in ultrasonic baths and is several orders of magnitude higher when compared to almost any other type of reactor. The effect of the region that has a size of the minimum Kolmogorov turbulence scale, i.e., a self-organizing “nanoreactor,” on the size of the particles being formed upon the deposition of particles with a complex composition is determined. Comparing the results of the calculation with the experimental data shows that, in some cases, the volume of the nanoreactor, taking into account the concentration of the solutions, determines the weight and size of the particles being formed. An explanation for the effect of a different influence of the velocity of impingement of the jets on the size of the nanoparticles being formed during the microreactor mixing of the reagents, depending on the characteristic features of the mechanisms of chemical reactions under the conditions of “soft” chemistry, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hessel, V., Löwe, H., Müller, A., and Kolb, G., Chemical Micro Process Engineering: Processing and Plants, Weinheim: Wiley-VCH, 2005.

    Book  Google Scholar 

  2. Capretto, L., Cheng, W., Hill, M., and Zhang, X., Micromixing within microfluidic devices, Top. Curr. Chem., 2011, vol. 304, p. 27. https://doi.org/10.1007/128_2011_150

    Article  CAS  PubMed  Google Scholar 

  3. Su, Y., Song, Y., and Xiang, L., Continuous-flow microreactors for polymer synthesis: Engineering principles and applications, Top. Curr. Chem., 2018, vol. 376, p. 44. https://doi.org/10.1007/s41061-018-0224-1

    Article  CAS  Google Scholar 

  4. Popova, E.A., Abiev, R.Sh., Lappalainen, L.A., Svetlov, S.D., Andreeva, T.V., Trifonov, R.E., and Ostrovskii, V.A., Synthesis of 5-phenyltetrazole and its N-methyl derivatives in a microreactor, Chem. Biochem. Eng. Q., 2014, vol. 28, no. 2, p. 241.

    Article  CAS  Google Scholar 

  5. Abiev R.Sh., Pavlyukova, Y.N., Nesterova, O.M., Svetlov, S.D., and Ostrovskii, V.A., Mass transfer intensification of 2-methyl-5-nitrotetrazole synthesis in two-phase liquid–liquid Taylor flow in microreactor, Chem. Eng. Res. Des., 2019, vol. 144, pp. 444–458. https://doi.org/10.1016/j.cherd.2019.01.033

    Article  CAS  Google Scholar 

  6. Wörner, M., A correlation for the characteristic velocity ratio to predict hydrodynamics of capillary gas–liquid Taylor flow, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 3–16. https://doi.org/10.1134/S0040579520010236

    Article  Google Scholar 

  7. Mei, M., Felis, F., Hébrard, G., Dietrich, N., and Loubière, K., Hydrodynamics of gas–liquid slug flows in a long in-plane spiral shaped milli-reactor, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 25–47. https://doi.org/10.1134/S0040579520010169

    Article  Google Scholar 

  8. Abiev, R.Sh., Miniaturization as one of the paths to process intensification in chemical engineering, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 1–2. https://doi.org/10.1134/S0040579520300016

    Article  CAS  Google Scholar 

  9. Haase, S., Bauer, T., Hilpmann, G., Lange, M., Ayubi, M.-M., and Abiev, R., Simultaneous detection of hydrodynamics, mass transfer and reaction rates in a three-phase microreactor, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 48–63. https://doi.org/10.1134/S0040579520010091

    Article  CAS  Google Scholar 

  10. Kumar, R., Yadav, V., and Abiev, R.Sh., Concurrent removal of heat transfer and mass flow rate nonuniformities in parallel channels of microchannel heat sink, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 77–90. https://doi.org/10.1134/S004057952001011X

    Article  CAS  Google Scholar 

  11. Meskin, P.E., Gavrilov, A.I., Maksimov, V.D., Ivanov, V.K., and Churagulov, B.P., Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia, Russ. J. Inorg. Chem., 2007, vol. 52, no. 11, p. 1648. https://doi.org/10.1134/s0036023607110022

    Article  Google Scholar 

  12. Proskurina, O.V., Tomkovich, M.V., Bachina, A.K., Sokolov, V.V., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., and Gusarov, V.V., Formation of nanocrystalline BiFeO3 under hydrothermal conditions, Russ. J. Gen. Chem., 2017, vol. 87, no. 11, pp. 2507–2515. https://doi.org/10.1134/S1070363217110019

    Article  CAS  Google Scholar 

  13. Chen, C., Cheng, J., Yu, S., Che, L., and Meng, Z., Hydrothermal synthesis of perovskite bismuth ferrite crystallites, J. Cryst. Growth, 2006, vol. 291, p. 135.

    Article  CAS  Google Scholar 

  14. Zhu, Z., Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure, Mol. Pharm., 2014, vol. 11, p. 776.

    Article  CAS  Google Scholar 

  15. Margulis, K., Magdassi, S., Lee, H.S., and Macosko, C.W., Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions, J. Colloid Interface Sci., 2014, vol. 434, p. 65.

    Article  CAS  Google Scholar 

  16. Han, J., Zhu, Z., Qian, H., Wohl, A.R., Beaman, C.J., Hoye, T.R., and Macosko, C.W., A simple confined impingement jets mixer for flash nanoprecipitation, J. Pharm. Sci., 2012, vol. 101, no. 10, p. 4018.

    Article  CAS  Google Scholar 

  17. Ravi Kumar, D.V., Prasad, B.L.V., and Kulkarni, A.A., Impinging jet micromixer for flow synthesis of nanocrystalline MgO: Role of mixing/impingement zone, Ind. Eng. Chem. Res., 2013, vol. 52, p. 17376. https://doi.org/10.1021/ie402012x

    Article  CAS  Google Scholar 

  18. Abiev, R.S., Almyasheva, O.V., Izotova, S.G., and Gusarov, V.V., Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors, J. Chem. Technol. Appl., 2017, vol. 1, no. 1, pp. 7–13. https://doi.org/10.35841/chemical-technology.1.1.7-13

    Article  Google Scholar 

  19. Kawase, M. and Miura, K., Fine particle synthesis by continuous precipitation using a tubular reactor, Adv. Powder Technol., 2007, vol. 18, no. 6, p. 725.

    Article  CAS  Google Scholar 

  20. Che, D., Zhu, X., Liu, P., Duan, Y., Wang, H., Zhang, Q., and Li, Y., A facile aqueous strategy for the synthesis of high-brightness LaPO4:Eu nanocrystals via controlling the nucleation and growth process, J. Lumin., 2014, vol. 153, pp. 369–374. https://doi.org/10.1016/j.jlumin.2014.03.028

    Article  CAS  Google Scholar 

  21. Nightingale, A.M. and deMello, J.C., Segmented flow reactors for nanocrystal synthesis, Adv. Mater., 2013, vol. 25, p. 1813.

    Article  CAS  Google Scholar 

  22. Nightingale, A.M., Krishnadasan, S.H., Berhanu, D., Niu, X., Drury, C., McIntyre, R., Valsami-Jones, E., and deMello, J.C., A stable droplet reactor for high temperature nanocrystal synthesis, Lab Chip, 2011, vol. 11, p. 1221.

    Article  CAS  Google Scholar 

  23. Doh, I., Erdem, E.Y., and Pisano, A.P., Trapping and collection of uniform size droplets for nanoparticle synthesis, Appl. Phys. Lett., 2012, vol. 100, p. 074106.

    Article  Google Scholar 

  24. Salvador, H.M.M., Fully resolved dynamics of mixing in confined impinging jets reactors, Master Dissertation in Computational Mechanics, Porto: Univ. do Porto, 2015.

  25. Proskurina, O.V., Nogovitsin, I.V., Il’ina, T.S., Danilovich, D.P., Abiev, R.Sh., and Gusarov, V.V., Formation of BiFeO3 nanoparticles using impinging jets microreactor, Russ. J. Gen. Chem., 2018, vol. 88, no. 10, pp. 2139–2143. https://doi.org/10.1134/S1070363218100183

    Article  CAS  Google Scholar 

  26. Proskurina, O.V., Abiev, R.S., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., Nevedomsky, V.N., and Gusarov, V.V., Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor, Chem. Eng. Process., 2019, vol. 143, p. 107598. https://doi.org/10.1016/j.cep.2019.107598

    Article  CAS  Google Scholar 

  27. Proskurina, O.V., Sivtsov, E.V., Enikeeva, M.O., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them, Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 2, p. 206. https://doi.org/10.17586/2220-8054-2019-10-2-206-214

    Article  CAS  Google Scholar 

  28. Hasson, D. and Peck, R.E., Thickness distribution in a sheet formed by impinging jets, AIChE J., 1964, vol. 10, no. 5, p. 752.

    Article  Google Scholar 

  29. Ibrahim, E. and Przekwas, A., Impinging jets atomization, Phys. Fluids A, 1991, vol. 3, p. 2981.

    Article  CAS  Google Scholar 

  30. Ashgriz, N., Impinging jet atomization, Handbook of Atomization and Sprays: Theory and Applications, Ashgriz, N., Ed., Boston: Springer, 2011, ch. 30, pp. 685–707. https://doi.org/10.1007/978-1-4419-7264-4_30

  31. Li, R. and Ashgriz, N., Characteristics of liquid sheets formed by two impinging jets, Phys. Fluids, 2006, vol. 18, p. 087104.

    Article  Google Scholar 

  32. Chen, X., Ma, D., Yang, V., and Popinet, S., High-fidelity simulations of impinging jet atomization, Atomization Sprays, 2013, vol. 23, no. 14, p. 1079.

    Article  Google Scholar 

  33. Faber, T.E., Fluid Dynamics for Physicists, Cambridge: Cambridge Univ. Press, 1997.

    Google Scholar 

  34. Choo, Y.-J. and Kang, B.-S., The velocity distribution of the liquid sheet formed by two low-speed impinging jets, Phys. Fluids, 2002, vol. 14, no. 2, p. 622. https://doi.org/10.1063/1.1429250

    Article  CAS  Google Scholar 

  35. Ashgriz, N., Brocklehurst, W., and Talley, D., Mixing mechanisms in a pair of impinging jets, J. Propul. Power, 2001, vol. 17, no. 3, pp. 736–749. https://doi.org/10.2514/2.5803

    Article  Google Scholar 

  36. Abiev, R.Sh., Al’myasheva, O.V., Gusarov, V.V., and Izotova, S.G., RF Patent 2625981, Izobret., Polezn. Modeli, 2017, no. 20.

  37. Perry’s Chemical Engineers’ Handbook, Green, D.W. and Perry, R.H., Eds., New York: McGraw-Hill, 2007.

    Google Scholar 

  38. Bałdyga, J. and Bourne, J.R., Turbulent Mixing and Chemical Reactions, Chichester: Wiley, 1999.

    Google Scholar 

  39. Atiemo-Obeng, V.A. and Calabrese, R.V., Rotor–stator mixing devices, Handbook of Industrial Mixing: Science and Practice, Paul, E.L., Atiemo-Obeng, V.A., and Kresta, S.M., Eds., Hoboken, N.J.: Wiley, 2004, ch. 8, pp. 479–505. https://doi.org/10.1002/0471451452.ch8

  40. Davies, J.T., A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils, Chem. Eng. Sci., 1987, vol. 42, p. 1671.

    Article  CAS  Google Scholar 

  41. Guichardon, P. and Falk, L., Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: Experimental procedure, Chem. Eng. Sci., 2000, vol. 55, p. 4233. https://doi.org/10.1016/S0009-2509(00)00068-3

    Article  CAS  Google Scholar 

  42. Commenge, J.-M. and Falk, L., Villermaux–Dushman protocol for experimental characterization of micromixers, Chem. Eng. Process., 2011, vol. 50, p. 979.

    Article  CAS  Google Scholar 

  43. Jasińska, M., Test reactions to study efficiency of mixing, Chem. Process Eng., 2015, vol. 36, no. 2, p. 171.

    Article  Google Scholar 

  44. Qadeer, R. and Khalid, N., Influence of concentration and temperature on viscosity of nitrate solutions of some trivalent lanthanides, J. Chem. Eng. Data, 2004, vol. 49, p. 892.

    Article  CAS  Google Scholar 

  45. Almjasheva, O.V., Lomanova, N.A., Popkov, V.I., Proskurina, O.V., Tugova, E.A., and Gusarov, V.V., The minimal size of oxide nanocrystals: Phenomenological thermodynamic vs crystal-chemical approaches, Nanosyst.: Phys., Chem., Math., 2019, vol. 10, no. 4, p. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437

    Article  CAS  Google Scholar 

  46. Almjasheva, O.V. and Gusarov, V.V., Metastable clusters and aggregative nucleation mechanism, Nanosyst.: Phys., Chem., Math., 2014, vol. 5, no. 3, pp. 405–416.

    CAS  Google Scholar 

  47. Almjasheva, O.V., Formation and structural transformations of nanoparticles in the TiO2–H2O system, Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, pp. 1031–1049. https://doi.org/10.17586/2220-8054-2016-7-6-1031-1049

    Article  CAS  Google Scholar 

  48. Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Ye., and Osiko, V.V., Oriented attachment of particles: 100 years of investigations of non-classical crystal growth, Russ. Chem. Rev., 2014, vol. 83, no. 12, p. 1204. https://doi.org/10.1070/RCR4453

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-12119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S., Proskurina, O.V., Enikeeva, M.O. et al. Effect of Hydrodynamic Conditions in an Impinging-Jet Microreactor on the Formation of Nanoparticles Based on Complex Oxides. Theor Found Chem Eng 55, 12–29 (2021). https://doi.org/10.1134/S0040579521010012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521010012

Keywords:

Navigation