Skip to main content
Log in

Modeling Mechanochemical and Structural Transformations in a Binary Powder Mixture

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Based on the constructed mathematical model, the macrokinetics of the formation of particles of mechanocomposites in a machined powder mixture is studied. The areas of different process modes making it possible to obtain a final product with the specified characteristics are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Avakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

  2. Heinicke, G., Tribochemistry, Berlin: Akademie-Verlag, 1984.

    Google Scholar 

  3. Butyagin, P.Yu., Problems in mechanochemistry and prospects for its development, Russ. Chem. Rev., 1994, vol. 63, no. 12, pp. 965– 976. https://doi.org/10.1070/RC1994v063n12ABEH000129

    Article  Google Scholar 

  4. Boldyrev, V.V., Research on the mechanochemistry of solids, Vestn. RFFI, 2004, vol. 37, no. 3, p. 38.

    Google Scholar 

  5. Boldyrev, V.V., Mechanochemistry in Siberia, Vestn. Ross. Akad. Nauk, 2018, vol. 88, no. 3, pp. 258–267.

    Google Scholar 

  6. Mekhanokompozity – prekursory dlya sozdaniya materialov s novymi svoistvami (Mechanocomposites: Precursors for Preparing Materials with New Properties), Lomovskii, O.I., Ed., Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2010.

    Google Scholar 

  7. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Fundamental Principles of Mechanical Activation, Mechanical Synthesis, and Mechanochemical Technologies), Avvakumov, E.G., Ed., Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2009.

    Google Scholar 

  8. Butyagin, P.Yu. and Yushchenko, V.S., Molecular dynamics of deformation mixing in solid mixtures, Kinet. Katal., 1988, vol. 29, no. 5, p. 1249.

    CAS  Google Scholar 

  9. Kuz’mich, Yu.V., Kolesnikova, I.G., Serba, V.I., and Freidin, B.M., Mekhanicheskoe legirovanie (Mechanical Alloying), Moscow: Nauka, 2005.

  10. Shkodich, N.F., Kochetov, N.A., Rogachev, A.S., Kovalev, D.Yu., and Sachkova, N.V., Effect of mechanical activation on Ni–Al and Ti–Al compositions during self-propagating high-temperature synthesis, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2006, no. 5, p. 44.

  11. Korchagin, M.A. and Lyakhov, N.Z., Self-propagating high-temperature synthesis in mechanoactivated compositions, Russ. J. Phys. Chem. B, 2008, vol. 2, no. 1, pp. 77–82. https://doi.org/10.1134/S1990793108010120

    Article  Google Scholar 

  12. Korchagin, M.A., Grigor’eva, T.F., Bokhonov, B.B., Sharafutdinov, M.R., Barinova, A.P., and Lyakhov, N.Z., Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition, Combust., Explos., Shock Waves, 2003, vol. 39, no. 1, pp. 43–50. https://doi.org/10.1023/A:1022145201911

    Article  Google Scholar 

  13. Korchagin, M.A., Grigorieva, T.F., Barinova, A.P., and Lyakhov, N.Z., The effect of mechanical treatment on the rate and limits of combustion in SHS processes, Int. J. Self-Propag. High-Temp. Synth., 2000, vol. 9, no. 3, pp. 307–320.

    CAS  Google Scholar 

  14. Shkoda, O.A. and Lapshin, O.V., Mechanical activation and thermal treatment of low-energy Nb-2Si powder blend. I. The experiment, Russ. Phys. J., 2019, vol. 61, no. 11, pp. 1951–1955. https://doi.org/10.1007/s11182-019-01623-0

    Article  CAS  Google Scholar 

  15. Dolgoborodov, A.Yu., Mechanically activated oxidizer-fuel energetic composites, Combust., Explos., Shock Waves, 2015, vol. 51, no. 1, pp. 86–99. https://doi.org/10.1134/S0010508215010098

    Article  Google Scholar 

  16. Kosheleva, M.K. and Rudobashta, S.P., International Scientific and Technical Conference “Increasing the Efficiency of Processes and Equipment in the Chemical and Related Industries”, Teor. Osn. Khim. Tekhnol., 2017, vol. 51, no. 2, p. 235.

    Google Scholar 

  17. Ziyatdinov, N.N., Modeling and optimization of chemical engineering processes and systems, Theor. Found. Chem. Eng., 2017, vol. 51, no. 6, pp. 889–892. https://doi.org/10.1134/S0040579517060197

    Article  CAS  Google Scholar 

  18. Lapshin, O.V. and Smolyakov, V.K., Dynamics of structural transformations in the comminution of a binary mixture, Fiz. Mezomekh., 2011, vol. 14, no. 2, p. 77.

    Google Scholar 

  19. Lapshin, O.V. and Smolyakov, V.K., Preparation of the layer structure of mechanocomposites in the comminution of a binary mixture, Khim. Fiz. Mezoskopiya, 2013, vol. 15, no. 2, p. 272.

    Google Scholar 

  20. Smolyakov, V.K. and Lapshin, O.V., Makroskopicheskaya kinetika mekhanokhimicheskogo sinteza (Macroscopic Kinetics of Mechanochemical Synthesis), Tomsk: Inst. Opt. Atmos. im. V.E. Zueva, Sib. Otd., Ross. Akad. Nauk, 2011.

  21. Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mathematical simulation of mechanochemical synthesis in a macroscopic approximation, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 54–59. https://doi.org/10.1134/S0040579508010077

    Article  CAS  Google Scholar 

  22. Boldyrev, V.V., Eksperimental’nye metody v mekhanokhimii tverdykh neorganicheskikh veshchestv (Experimental Methods in the Mechanochemistry of Inorganic Solids), Novosibirsk: Nauka, 1983.

  23. Tsuzuki, T. and McCormick, P.G., Mechanochemical synthesis of nanoparticles, J. Mater. Sci., 2004, vol. 39, pp. 5143–5146. https://doi.org/10.1023/B:JMSC.0000039199.56155.f9

    Article  CAS  Google Scholar 

  24. Reddy, B.S.B., Das, K., and Das, S., A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical–thermal activation of chemical reactions, J. Mater. Sci., 2007, vol. 42, pp. 9366–9378. https://doi.org/10.1007/s10853-007-1827-z

    Article  CAS  Google Scholar 

  25. Schoenitz, M., Ward, T.S., and Dreizin, E.L., Fully dense nano-composite energetic powders prepared by arrested reactive milling, Proc. Combust. Inst., 2005, vol. 30, no. 2, pp. 2071–2078. https://doi.org/10.1016/j.proci.2004.08.134

    Article  CAS  Google Scholar 

  26. Korchagin, M.A., Kinelovskii, S.A., and Lyakhov, N.Z., Cumulative spraying of coatings by nanocomposite powders, II Vserossiiskaya konferentsiya po nanomaterialam “NANO 2007” (Proc. II All-Russian Conference on Nanomaterials “NANO 2007”), Novosibirsk, 2007, p. 374.

  27. Reddy, B.S.B., Rajasekhar, K., Venu, M., Dilip, J.J.S., Das, S., and Das, K., Mechanical activation-assisted solid-state combustion synthesis of in situ aluminum matrix hybrid (Al3Ni/Al3O2) nanocomposites, J. Alloys Compd., 2008, vol. 465, nos. 1–2, pp. 97–105. https://doi.org/10.1016/j.jallcom.2007.10.098

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Lapshin.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapshin, O.V. Modeling Mechanochemical and Structural Transformations in a Binary Powder Mixture. Theor Found Chem Eng 54, 349–356 (2020). https://doi.org/10.1134/S0040579520010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520010121

Keywords:

Navigation