Skip to main content
Log in

Production of Chemically Pure Zirconia-Based Nanoceramics in the ZrO2(Y2O3)–Al2O3 System for Restorative Dentistry

  • NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The synthesis technology of a chemically pure nanodisperse precursor powder (10–12 nm) based on a tetragonal solid zirconia (t-ZrO2) solution in the ZrO2 system (Y2O3)–Al2O3 for restorative dentistry is developed. A ceramic material with a crystallite size of 60–65 nm is obtained; its phase composition, dispersion, microstructure, and physical and mechanical properties are investigated; and its low-temperature moisture aging structural stability is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sevast’yanov, V.I. and Kirpichnikov, M.P., Biosovmestimye materialy (Biocompatible Materials), Moscow: MIA, 2011.

  2. Hench, L.L., An Introduction to Bioceramics, London: Imperial College Press, 2013.

    Book  Google Scholar 

  3. Grigor’ev, M.V. and Kul’kov, S.N., Synthesis of ceramic materials with the specified structure and properties for biomedical applications, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Novye tekhnologii sozdaniya i primeneniya biokeramiki v vosstanovitel’noi meditsine” (Proc. III International Research and Practice Conference “New Technologies for Production and Application of Bioceramics in Regenerative Medicine”) (Tomsk, 2013), Tomsk: VTSNT, 2013, pp. 47–52.

  4. Podzorova, L.I., Il’icheva, A.A., Anisimova, S.V., et al., Yb–TZP ceramics for orthopedic stomatology, Nanotekhnol. Okhr. Zdorov’ya, 2013, vol. 5, no. 4 (17), pp. 10–14.

  5. Proskudin, D.V. and Starosvetskii, S.I., Ceramics in present-day orthopedic stomatology, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Novye tekhnologii sozdaniya i primeneniya biokeramiki v vosstanovitel’noi meditsine” (Proc. III International Research and Practice Conference “New Technologies for Production and Application of Bioceramics in Regenerative Medicine”) (Tomsk, 2013), Tomsk: VTSNT, 2013, pp. 136–139.

  6. Porozova, S.E. and Kulmetyeva, V.B., Influence of matrix replacement on consolidation processes of composite ceramic materials of ZrO2-Al2O3 system, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 420–426. https://doi.org/10.1134/S2075113314040406

    Article  Google Scholar 

  7. Trusova, E.A., Vokhmintsev, K.V., Khrushcheva, A.A., and Pisarev, S.A., Technology of ultradispersed products for fine-grained ceramics, Khim. Tekhnol., 2013, vol. 14, no. 5, pp. 269–279.

    CAS  Google Scholar 

  8. Konakov, V.G., Borisova, N.V., Golubev, S.N., et al., The prehistory of the production of nanosized precursors based on the solid solutions of zirconium dioxide and their thermal evolution, Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2012, no. 2, pp. 65–75.

  9. Generalov, M.B., Osnovnye protsessy kriokhimicheskoi nanotekhnologii (Basic Processes in Cryochemical Nanotechnology), Moscow: Professiya, 2010.

  10. Danilenko, I., Konstantinova, T., Volkova, G., Burkhovetski, V., and Glazunova, V., The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount, J. Ceram. Sci. Technol., 2015, vol. 6, no. 3, pp. 191–200.

    Google Scholar 

  11. Morozova, L.V., Kalinina, M.V., Arsent’ev, M.Yu., and Shilova, O.A., Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2(Y2O3) – Al2O3 system, Inorg. Mater., 2017, vol. 53, no. 6, pp. 640–647. https://doi.org/10.1134/S0020168517060115

    Article  CAS  Google Scholar 

  12. Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., and Shilova, O.A., RF Patent 2536593, Izobret., Polezn. Modeli, 2014, no. 36.

  13. Morozova, L.V., Kalinina, M.V., Panova, T.I., Popov, V.P., Drozdova, I.A., and Shilova, O.A., Synthesis of the study of solid solutions based on the ZrO2–HfO2–Y2O3(CeO2) system, Glass Phys. Chem., 2017, vol. 43, no. 5, pp. 464–470. https://doi.org/10.1134/S1087659617050133

    Article  CAS  Google Scholar 

  14. Zavodinsky, V.G. and Chibisov, A.N., Stability of cubic zirconia and of stoichiometric zirconia nanoparticles, Phys. Solid State, 2006, vol. 48, no. 2, pp. 363–368. https://doi.org/10.1134/S1063783406020296

    Article  CAS  Google Scholar 

  15. Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Arsent’ev, M.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355. https://doi.org/10.1134/S1087659614030158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Morozova.

Additional information

Translated by A. Kolemesin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, L.V., Kovalko, N.Y., Kalinina, M. et al. Production of Chemically Pure Zirconia-Based Nanoceramics in the ZrO2(Y2O3)–Al2O3 System for Restorative Dentistry. Theor Found Chem Eng 53, 848–854 (2019). https://doi.org/10.1134/S0040579519050154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519050154

Keywords:

Navigation