Skip to main content
Log in

Structural characteristics and state of water in an acetate cellulose membrane

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Experimental data have been obtained and an analysis has been performed of the degree of crystallinity and amorphism and the state of water for cellulose acetate membranes using the methods of X-ray diffraction (XRD), infrared spectroscopy and thermogravimetry. The degree of crystallinity, as well as the crystallite size, have been determined in the membrane samples before and after water absorption. It has been found that OH groups of cellulose acetate form a nonequilibrium network of hydrogen bonds between molecules and fragments in the amorphous phase of an air-dry semipermeable membrane. It has been shown that water that acts as a plasticizer causes the ordering of the macromolecular amorphous phase, which leads to a transition into the liquid crystal phase with the formation of additional capillary spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotov, V.V., Netesova, G.A., Peregonchaya, O.V., and Kuznetsova, I.V., Nonisothermal dehydration and desolvatation of cation exchange membranes, Sorbts. Khromatogr. Protsessy, 2010, vol. 10, no. 2, pp. 208–215.

    Google Scholar 

  2. Netesova, G.A., Kotov, V.V., Beloglazov, V.A., Chernyaeva, M.A., and Kononenko, N.A., Correlation between water transport through the cation exchange membrane MK-100 amd its structure, Sorbts. Khromatogr. Protsessy, 2007, vol. 7, no. 5, pp. 830–734.

    Google Scholar 

  3. Sedelkin, V.M., Potekhina, L.N., Chirkova, O.A., Mashkova, D.A., and Oleinikova, E.V., Structure and properties of cellulose acetate solutions for molding nanostructured filtering membranes, Vestn. Saratov. Gos. Tekh. Univ., 2013, no. 2, pp. 98–105.

    Google Scholar 

  4. Membrane Technology and Applications, Baker, R.W., Ed., Chichester, UK: Wiley, 2004.

  5. Nagarale, R.K., Gohil, G.S., and Shahi, V.K., Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 2006, vol. 119, nos. 2–3, pp. 97–130.

    Article  CAS  Google Scholar 

  6. Saxena, A., Gohil, G.S., and Shahi, V.K., Electrochemical membrane reactor: single step separation and ion substitution for the recovery of lactic acid from lactates salt, Ind. Eng. Chem. Res., 2007, no. 46, pp. 1270–1276.

    Article  CAS  Google Scholar 

  7. Bowen, W.R. and Williams, P.M., Quantitative predictive modelling of ultrafiltration processes: colloidal science approaches, Adv. Colloid Interface Sci., 2007, vol. 134–135, pp. 3–14.

    Article  Google Scholar 

  8. Brans, G., Schröen, C.G.P.H., van der Sman, R.G.M., and Boom, R.M., Membrane fractionation of milk: state of the art and challenges, J. Membr. Sci., 2004, vol. 243, pp. 263–272.

    Article  CAS  Google Scholar 

  9. Mulder, M., Basic Principles of Membrane Technology, Amsterdam: Kluwer, 1991.

    Book  Google Scholar 

  10. Ochkina, K.A., Kulov, N.N., and Fomichev, S.V., Transport properties of reverse-osmosis polyamide and polysulfone membranes modified with crown ethers, Theor. Found. Chem. Eng., 1998, vol. 32, no. 1, pp. 44–47.

    CAS  Google Scholar 

  11. Dubyaga, V.P., Perepechkin, L.P., and Katalevskii, E.E., Polimernye membrany (Polymer Membranes), Moscow: Khimiya, 1981.

    Google Scholar 

  12. Shipovskaya, A.B., Phase analysis of cellulose ether–mesophasegenic solvent systems, Extended Abstract of Doctoral (Eng.) Dissertation, Saratov: Saratov State Technical Univ., 2009.

    Google Scholar 

  13. Aleshina, L.A., Glazkova, S.V., Lugovskaya, L.A., Podoinikova, M.V., Fofanov, A.D., and Silina, E.V., Contemporary conceptions of cellulose structure (review), Khim. Rast. Syr’ya, 2001, no. 1, pp. 5–36.

    Google Scholar 

  14. Bocahut, A., Delannoy, J.-Y., Vergelati, C., and Mazeau, K., Conformational analysis of cellulose acetate in the dense amorphous state, Cellulose, 2014, vol. 21, pp. 3897–3912.

    Article  CAS  Google Scholar 

  15. Masatoshi, I., Kiyohiko, T., and Shukichi, T., Mechanical and other characteristics of cellulose ester bonded with modified cardanol from cashew nut shells and additional aliphatic and aromatic components, Cellulose, 2013, vol. 20, pp. 559–569.

    Article  Google Scholar 

  16. Membrany, fil’truyushchie elementy, membrannye tekhnologii: Katalog (Membranes, Filtrating Elements, Membrane Technologies: A Catalog), Vladimir: Vladipor, 2007.

  17. Ioelovich, M.Ya. and Veveris, G.P., Determination of cellulose crystallinity by X-ray methods, Khim. Drevesiny, 1987, no. 5, pp. 75–80.

    Google Scholar 

  18. Kovalev, G.V. and Bugaenko, L.T., Plasticizing effect of water on γ-irradiated cellulose, Vestn. Mosk. Univ., Ser. 2: Khim., 2002, vol. 43, no. 1, pp. 67–70.

    CAS  Google Scholar 

  19. Polikarpov, V.M., Lazarev, S.I., and Golovin, Yu.M., Experimental study of porous structure of reverseosmosis composite membranes by small-angle X-ray scattering, Kondens. Sredy Mezhfaz. Granitsy, 2010, vol. 12, no. 4, pp. 382–385.

    CAS  Google Scholar 

  20. Vodorodnaya svyaz' (Hydrogen Bond), Sokolov, N.D., Ed., Moscow: Nauka, 1981.

  21. Kovalev, S.V., Coefficients of hydrodynamic permeability of porous membranes depending on pressure gradient, J. Water Chem. Technol., 2014, vol. 36, no. 1, pp. 31–38.

    Article  Google Scholar 

  22. Kovalev, S.V., Method of study of hydrodynamic permeability of membranes in relation to pressure gradient and temperature, Membr. Membr. Tekhnol., 2013, no. 3, pp. 191–198.

    Google Scholar 

  23. Kovalev, S.V., Experimental studies and mathematical description of baromembrane separation of sulfatecontaining solutions, Vestn. Tambov. Univ., Ser. Est. Tekh. Nauki, 2013, vol. 18, no. 1, pp. 195–198.

    Google Scholar 

  24. Zhbankov, R.G. and Kozlov, P.V., Fizika tsellyulozy i ee proizvodnykh (Physics of Cellulose and Its Derivatives), Minsk: Nauka i Tekhnika, 1983.

    Google Scholar 

  25. Pankov, S.P. and Fainberg, E.Z., Vzaimodeistvie tsellyulozy i tsellyuloznykh materialov s vodoi (Interaction of Cellulose and Cellulosic Materials with Water), Moscow: Khimiya, 1976.

    Google Scholar 

  26. Lazarev, S.I., Golovin, Yu.M., Abonosimov, D.O., and Polyansky, K.K., An X-ray scattering study of the structure of an MGA-95 composite membrane, Pet. Chem., 2014, vol. 54, no. 8, pp. 622–624.

    Article  CAS  Google Scholar 

  27. Lazarev, S.I., Golovin, Yu.M., Mitsul, I.P., Nikitenko, D.O., Polikarpov, V.M., Khorokhorina, I.V., and Holodilin, V.N., Electrokinetic characteristics of semipermeable reverse-osmosis membranes in aqueous solutions of sodium bicarbonate, Sorbts. Khromatogr. Protsessy, 2014, vol. 14, no. 3, pp. 525–529.

    CAS  Google Scholar 

  28. Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Original Russian Text © S.I. Lazarev, Yu.M. Golovin, S.V. Kovalev, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 3, pp. 302–310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M. & Kovalev, S.V. Structural characteristics and state of water in an acetate cellulose membrane. Theor Found Chem Eng 50, 294–302 (2016). https://doi.org/10.1134/S0040579516030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516030076

Keywords

Navigation