Skip to main content
Log in

Asymptotics of the Helmholtz equation solutions in a two-layer medium with a localized right-hand side

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct the leading term of the semiclassical asymptotic solution of the Helmholtz equation with a small parameter in the localized right-hand side. This equation arises, for example, in the problem of ocean acoustics, in which the small parameter is given by the ratio of the characteristic scale of the “vertical ” coordinate to that of the other coordinates. The equation is considered in the region bounded in the “vertical ” coordinate; it is divided into two layers, with the coefficient in the Helmholtz equation and the derivative of the solution having fixed jump discontinuities at the interface. The technique for constructing the asymptotics involves the operator separation of variables (adiabatic approximation) and the use of the recently developed method for constructing asymptotics of equations with localized right-hand sides in the equations obtained after the variable separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. For \(\zeta> 0\), this follows from \(\sqrt{\zeta} > \sin \sqrt{\zeta}\); for \(\zeta \leq 0\), this can be seen from the signs of the power series terms.

  2. Strictly speaking, the symbol \(\phi_\varkappa(x, p, z, h)\), which depends parametrically on \(z\), must be understood as a map \((x, p, h) \mapsto \phi_\varkappa(x, p, \cdot, h)\) with values in the domain (4) of the operator \(\mathcal{H}(x, p)\) for given \((x, p)\).

  3. For example, in the case of dimension \(n=2\), we have the circle \(\mathbb{S}^{1} \cong \mathbb{R}/2\pi \mathbb{Z}\), and we can take \(Q(\psi)=\sqrt{\mathcal{E}_\varkappa(x^0)}(\cos\psi,\sin\psi)\).

  4. For example, for \(n=2\) and \(Q(\psi)=\sqrt{\mathcal{E}_\varkappa(x^0)}(\cos\psi,\sin\psi)\), we have \(J^\varepsilon(\psi,\tau)=-2\det\frac{\partial (\mathcal{X}-i\varepsilon \mathcal{P})}{\partial (\psi,\tau)}\).

  5. For \(\varepsilon = 0\), at the points where this argument is nonzero.

  6. The choice of such an atlas depends on some properties, and such atlases are called canonical (see [23]). Also see [24], where more general formulas for the Maslov canonical operator are described for more general classes of atlases.

  7. A chart \(V_\beta \subset \Lambda_+\) is called nonsingular if its projection onto the configuration space \(V_\beta \to \mathbb{R}^n_x\) defined by the map \((\psi, \tau) \mapsto \mathcal{X}(\psi,\tau)\) is an embedding.

References

  1. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics, Springer, New York (2012).

    Book  MATH  Google Scholar 

  2. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, Springer, New York (2011).

    Book  MATH  Google Scholar 

  3. G. V. Frisk, Ocean and Seabed Acoustics: A Theory of Wave Propagation, Prentice Hall PTR, Englewood Cliffs, NJ (1998).

    Google Scholar 

  4. C. L. Pekeris, “Theory of propagation of explosive sound in shallow water,” in: Propagation of Sound in the Ocean (Geological Society of America Memoirs, Vol. 27, J. L. Worzel, M. Ewing, and C. L. Pekeris, eds.), Geol. Soc. Amer., New York (1948), pp. 1–118.

    Chapter  Google Scholar 

  5. P. S. Petrov, M. Yu. Trofimov, and A. D. Zakharenko, “Modal perturbation theory in the case of bathymetry variations in shallow-water acoustics,” Russ. J. Math. Phys., 28, 257–262 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and M. Rouleux, “Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides,” Theoret. and Math. Phys., 214, 1–23 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. M. Babich, “On the short-wave asymptotic behaviour of the Green’s function for the Helmholtz equation [in Russian],” Mat. Sb. (N. S.), 65(107), 576–630 (1964).

    MathSciNet  Google Scholar 

  8. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory, Alpha Science, Oxford (2009).

    Google Scholar 

  9. V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, and T. Ya. Tudorovskii, “A generalized adiabatic principle for electron dynamics in curved nanostructures,” Phys. Usp., 48, 962–968 (2005).

    Article  ADS  Google Scholar 

  10. V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics,” J. Eng. Math., 55, 183–237 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. P. Maslov, Operational Methods, Mir Publ., Moscow (1976).

    MATH  Google Scholar 

  12. R. P. Feynman, “An operator calculus having applications in quantum electrodynamics,” Phys. Rev., 84, 108–128 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and M. Rouleux, “The Maslov canonical operator on a pair of lagrangian manifolds and asymptotic solutions of stationary equations with localized right-hand sides,” Dokl. Math., 96, 406–410 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Yu. Dobrokhotov, D. S. Minenkov, and M. Rouleux, “The Maupertuis–Jacobi principle for Hamiltonians of the form \(F(x,|p|)\) in two-dimensional stationary semiclassical problems,” Math. Notes, 97, 42–49 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Yu. Dobrokhotov and M. Rouleux, “The semiclassical Maupertuis–Jacobi correspondence and applications to linear water waves theory,” Math. Notes, 87, 430–435 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Yu. Dobrokhotov and M. Rouleux, “The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic hamiltonian flows with applications to linear water waves theory,” Asymptotic Anal., 74, 33–73 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, and B. Tirozzi, “Scalarization of stationary semiclassical problems for systems of equations and its application in plasma physics,” Theoret. and Math. Phys., 193, 1761–1782 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. B. R. Vainberg, “On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as \(t\to\infty\) of solutions of non-stationary problems,” Russian Math. Surveys, 30, 1–58 (1975).

    Article  ADS  MATH  Google Scholar 

  19. P. N. Petrov and S. Yu. Dobrokhotov, “Asymptotic solution of the Helmholtz equation in a three-dimensional layer of variable thickness with a localized right-hand side,” Comput. Math. Math. Phys., 59, 529–541 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972).

    MATH  Google Scholar 

  21. G. Teschl, Mathematical Methods in Quantum Mechanics (Graduate Studies in Mathematics, Vol. 157), AMS, Providence, RI (2014).

    MATH  Google Scholar 

  22. A. Zettl, Sturm–Liouville Theory (Mathematical Surveys and Monographs, Vol. 121), AMS, Providence, RI (2005).

    MATH  Google Scholar 

  23. V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Contemporary Mathematics, Vol. 5), Reidel, Dordrecht (1981).

    Book  Google Scholar 

  24. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. I. Shafarevich, “New integral representations of the Maslov canonical operator in singular charts,” Izv. Math., 81, 286–328 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic,” Russ. J. Math. Phys., 25, 545–552 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp,” Math. Notes, 108, 318–338 (2020).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to S. Yu. Dobrokhotov and V. E. Nazaikinskii for the attention to this work and the valuable discussions.

Funding

This work was supported by the Russian Science Foundation (grant No. 21-11-00341), https://rscf.ru/en/project/21-11-00341/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Klevin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 148–168 https://doi.org/10.4213/tmf10421.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.Y., Klevin, A.I. Asymptotics of the Helmholtz equation solutions in a two-layer medium with a localized right-hand side. Theor Math Phys 216, 1036–1054 (2023). https://doi.org/10.1134/S0040577923070103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923070103

Keywords

Navigation