Skip to main content
Log in

Operator separation of variables for adiabatic problems in quantum and wave mechanics

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Linear problems in mathematical physics where the adiabatic approximation is used in a wide sense are studied. From the idea that all these problems can be treated as problems with an operator-valued symbol, a general regular scheme of adiabatic approximation based on operator methods is proposed. This scheme is a generalization of the Born–Oppenheimer and Maslov methods, the Peierls substitution, etc. The approach proposed in this paper allows one to obtain “effective” reduced equations for a wide class of states inside terms (i.e., inside modes, subbands of dimensional quantization, etc.) with possible degeneration taken into account. Next, by application of asymptotic methods, in particular the semiclassical approximation method, to the reduced equation, the states corresponding to a distinguished term (effective Hamiltonian) can be classified. It is shown that the adiabatic effective Hamiltonian and the semiclassical Hamiltonian can be different, which results in the appearance of “nonstandard characteristics” while passing to classical mechanics. This approach is used to construct solutions of several problems in wave and quantum mechanics, particularly problems in molecular physics, solid-state physics, nanophysics and hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born M., Oppenheimer J.R., (1927) Zur quantentheorie der molekeln. Annalen der Physik 84: 457–484

    Article  ADS  Google Scholar 

  2. Peierls R.E.,(1955) Quantum Theory of Solids. Oxford, The Clarendon Press, viii + 229 pp.

    MATH  Google Scholar 

  3. Born M., Huang K.,(1954) Dynamical Theory of Crystall Lattices. Oxford, The Clarendon Press, xii + 420 pp.

    Google Scholar 

  4. L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory). Theoretical Physics 3. Moscow: Nauka (1989) 768 pp. (in Russian) L.D. Landau and E.M. Lifshitz, Quantum Mechanics: (Nonrelativistic Theory). In: Theoretical Physics 3. Oxford, London, Edinburgh: Pergamon Press (1965) ix + 616 pp.

  5. E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics. Pt. 2. Theory of Condensed State. Theoretical Physics IX. Moscow: Nauka (1978) 448pp; E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics. Pt. 2. Theory of Condensed State. In: L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii (eds.), Course of Theoretical Physics 9. Oxford, London, Edinburgh: Pergamon Press (1980) x + 387 pp.

  6. V.P. Maslov, Perturbation Theory and Asymptotic Methods. Moscow: Moscow Univ. Publ. (1965) 549pp; V.P. Maslov, Théorie des perturbations et méthodes asymptotiques. Paris: Dunod, Gauthier-Villars (1972) xii + 384 pp.

  7. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London A392 (1984)

  8. Percival I.C., (1977) Semiclassical theory of bound states. Adv. Chem. Phys. 36: 1–61

    Article  Google Scholar 

  9. Hagedorn G.A., (1980) A time dependent Born–Oppenheimer approximation. Comm. Math. Phys. 77: 1–19

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Yu.Z. Miropol’sky, The Dynamics of Internal Gravity Waves in Ocean. Leningrad: Gidrometeoizdat (1981) 302pp; Yu.Z. Miropol’sky, The Dynamics of Internal Gravity Waves in Ocean. In:Atmospheric and Oceanographic Sciences Library 24. Dordrecht etc.: Kluwer Academic Publishers (2001) xvii + 406 pp.

  11. S.Yu. Dobrokhotov, Maslov’s methods in linearized theory of gravitational waves on the liquid surface. Dokl. Akad. Nauk SSSR 269 (1983) 76–80; S.Yu. Dobrokhotov, Maslov’s methods in linearized theory of gravitational waves on the liquid surface. Sov. Phys. – Dokl. 28 (1983) 229–231.

    Google Scholar 

  12. Dobrokhotov S.Yu., (1984) Applications of Maslov’s theory to two problems for equations with operator-valued symbols. (in Russian) Usp. Mat. Nauk 39: 125

    MathSciNet  Google Scholar 

  13. L.V. Berlyand and S.Yu. Dobrokhotov, “Operator separation of variables” in problems of short-wave asymptotics for differential equations with rapidly oscillating coefficients. Dokl. Akad. Nauk SSSR296 (1987) 80–84; L.V. Berlyand and S.Yu. Dobrokhotov, “Operator separation of variables” in problems of short-wave asymptotics for differential equations with rapidly oscillating coefficients. Sov. Phys. – Dokl. 32 (1987) 714–716.

    Google Scholar 

  14. V.P. Maslov, Operational Methods. Moscow: Nauka (1973) 544 pp; V.P. Maslov, Operational Methods. Transl. from the Russian. Moscow: Mir Publishers (1973) 559 pp.

  15. V.P. Maslov, Nonstandard characteristics in asymptotic problems. Uspekhi Mat. Nauk 38 (1983) 3–36; V.P. Maslov, Nonstandard characteristics in asymptotical problems. In: Proceedings of the International Congress of Mathematicians (Warsaw, Aug. 16–24 1983) 1, 2. Warsaw: PWN (1984) pp. 139–183.

  16. L.I. Schiff, Quantum Mechanics. New York–Toronto–London: McGraw-Hill Book Co., Inc. (1955) xii + 417 pp.

  17. V.V. Belov, Semiclassical energy levels of a two-atom molecule in a magnetic field. Izv. vuzov. Matematika6 (1976) 13–18 (in Russian).

    Google Scholar 

  18. Panatti G., Spohn H., Teufel S.,(2003) Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys. 242: 547–578

    Article  ADS  MathSciNet  Google Scholar 

  19. Dobrokhotov S.Yu., Zhevandrov P.N., (2003) Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves I Main constructions and equations for surface gravity waves. Russ. J. Math. Phys. 10: 1–31

    MATH  MathSciNet  Google Scholar 

  20. S.Yu. Dobrokhotov, Many-Phase Asymptotic Solutions to Linear and Nonlinear Partial Differential Equations with a Small Parameter. Doctoral thesis. (in Russian). Moscow: IPMekh Akad. Nauk SSSR (1988) 293 pp.

  21. M.V. Karasev and V.P. Maslov, Asymptotic and geometric quantization. Usp. Mat. Nauk 39 (1984) 115–173; M.V. Karasev and V.P. Maslov, Asymptotic and geometric quantization. Russ. Math. Surveys 39 (1984) 133–205.

    Google Scholar 

  22. M.V. Karasev and V.P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization. Moscow: Nauka (1991) 366pp; M.V. Karasev and V.P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization. In: Transl. Math. Monographs 119. Providence, Rhode Island: AMS (1993) xi + 366 pp.

  23. Anosov D.V., (1960) Averaging in systems of ordinary differential equations with rapidly oscillating solutions. (in Russian) Izv. Akad. Nauk SSSR. Ser. Mat. 24: 721–742

    MATH  MathSciNet  Google Scholar 

  24. V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. In: V.I. Arnold (ed.), R.V. Gamkrelidze (ed.-in-chief), Progress in Science and Technology. Current Problems in Mathematics. Fundamental Directions 3 (Dynamical Systems III). Moscow: VINITI AN SSSR (1985) 304pp; V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics. In: V.I. Arnold (ed.), R.V. Gamkrelidze (ed.-in-chief), Encyclopaedia of Mathematical Sciences 3 (Dynamical Systems III). Berlin etc.: Springer-Verlag (1988) xiv + 291 pp.

  25. P. Lochak and P. Meunier, Multiphase Averaging for Classical systems. In: S.S. Antmann, J.E. Marsden and L. Sirovich (eds.), Applied Mathematical Sciences72. Berlin etc.: Springer-Verlag (1988) xi + 360 pp.

  26. A.I. Neishtadt, Averaging in multi-frequency systems. II. Dok. Akad. Nauk SSSR. Mekhanika 226 (1976) 1295–1298; A.I. eishtadt, Averaging in multi-frequency systems. II.Sov. Phys. – Dokl. 21 (1976) 80–82.

    Google Scholar 

  27. Neishtadt A.I., (1984) The separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech. 48: 133–139

    Article  MathSciNet  Google Scholar 

  28. Stefanski K., Taylor H.C., (1985) New approach to understanding quasiperiodicity in nonintegrable Hamiltonian systems. Phys. Rev. A 31: 2810–2820

    Article  ADS  MathSciNet  Google Scholar 

  29. Berry M.V., (1985) Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen. 18: 15–27

    Article  ADS  MathSciNet  Google Scholar 

  30. de Witt B., (1957) Dynamical theory in curved spaces. I. Review of the classical and quantum action principles. Rev. Mod. Phys. 29: 377–397

    Article  ADS  MathSciNet  Google Scholar 

  31. Jensen H., Koppe H., (1971) Quantum mechanics with constraints. Ann. Phys. 63: 586–591

    Article  ADS  Google Scholar 

  32. da Costa R.C.T., (1981) Quantum mechanics of constrained particle. Phys. Rev. A 23: 1982–1987

    Article  ADS  MathSciNet  Google Scholar 

  33. da Costa R.C.T., (1982) Constraints in quantum mechanics. Phys. Rev. A 25: 2893–2900

    Article  ADS  MathSciNet  Google Scholar 

  34. M.V. Entin and L.I. Magarill, Electrons in a twisted quantum wire. Phys. Rev. B 66 (2002) 205308 (5 pages).

  35. L.I. Magarill and M.V. Entin, Electrons in curvilinear quantum wire. Zh. Exper. Teor. Fiz. 123 (2003) 867–876; L.I. Magarill and M.V. Entin, Electrons in curvilinear quantum wire. J. Exper. Theor. Phys. 96 (2003) 766–774.

    Google Scholar 

  36. Schuster P.C., Jaffe R.L., (2003) Quantum mechanics on manifolds embedded in Euclidean space. Ann. Phys. 307: 132–143

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. V.I. Arnold, Mathematical Methods of Classical Mechanics. Moscow: Nauka (1974) 432pp; V.I. Arnold, Mathematical Methods of Classical Mechanics. In: S. Axler, F.W. Gehring and K.A. Ribet (eds.), Graduate Texts in Mathematics 60. Berlin etc.: Springer-Verlag (1978) x + 462 pp.

  38. V.P. Maslov, The characteristics of pseudodifferential operators and difference schemes. In: Actes du Congrés Internationales des Mathématiciens (Nice, 1970) 2. Paris: Gauthier-Villars (1971) pp. 755–769.

  39. V.P. Maslov, Mathematical Aspects of Integral Optics. Moscow: MIEM (1983) 130pp; Journal version in: Russ. J. Math. Phys. 8 (2001) 83–105 and 180–238.

  40. N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Moscow: Nauka (1984) 352pp; N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. In: Mathematics and Its Applications: Soviet Series 36. Dordrecht etc.: Kluwer Academic Publishers (1989) xxxv + 366 pp.

  41. V.G. Vaks, Interatomic Interactions and Bonds in Solids. (in Russian). Moscow: IzdAT (2002) 256 pp.

  42. M.I. Katsnelson and A.V. Trefilov, Crystal Lattice Dynamics and Thermodynamics. (in Russian). Moscow: IzdAT (2002) 382 pp.

  43. V.S. Buslaev, Quasiclassical approximation for equations with periodic coefficients. Uspekhi Mat. Nauk42 (1987) 77–98; V.S. Buslaev, Quasiclassical approximation for equations with periodic coefficients. Russ. Math. Surveys42 (1987) 97–125.

    Google Scholar 

  44. Buslaev V.S., (1984) Adiabatic perturbation of a periodic potential. (in Russian). Teor. Mat. Fiz. 58: 223–243

    MathSciNet  Google Scholar 

  45. Fedotov A., Klopp F., (2002) Anderson transition for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys. 227: 1–92

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. S.Yu. Dobrokhotov, Resonances in asymptotic of a solution of the Cauchy problem for the Schrödinger equation with a rapidly oscillating finite-zone potential. Mat. Zametki44 (1988) 319–340; S.Yu. Dobrokhotov, Resonances in asymptotic of a solution of the Cauchy problem for the Schrödinger equation with a rapidly oscillating finite-zone potential. Math. Notes44 (1988) 1015–1033.

    Google Scholar 

  47. Blount E.I., (1961) Bloch electrons in a magnetic field. Phys. Rev. 126(5): 1636–1653

    Article  ADS  MathSciNet  Google Scholar 

  48. S.P. Novikov and A.Ya. Maltsev, Topological phenomena in normal metals. Usp. Fiz. Nauk 168 (1998) 249–258; S.P. Novikov and A.Ya. Maltsev, Topological Phenomena in Normal Metals. Phys. – Usp. 41 (1998) 231–239.

  49. Su W.P., Schrieffer I.R., Heeger A.J., (1980) Soliton excitations in polyacetylene. Phys. Rev. B 22: 2099–2111

    Article  ADS  Google Scholar 

  50. Ziman J.M., (1964) Principles of the Theory of Solids. Cambridge, Cambridge University Press, xiii + 360 pp.

    MATH  Google Scholar 

  51. S.A. Brazovskii, I.E. Dzyaloshinskii and I.M. Krichever, Exactly soluble Peierls models. Zh. Exper. Teor. Fiz. 83 (1982) 389–404; S.A. Brazovskii, I.E. Dzyaloshinskii and I.M. Krichever, Exactly soluble Peierls models. Phys. Lett. A 83 (1982) 40–42.

    Google Scholar 

  52. I.M. Krichever, Algebraic curves and non-linear difference equations. Usp. Mat. Nauk33 (1978) 215–216; I.M. Krichever, Algebraic curves and non-linear difference equations. Russ. Math. Surveys 33 (1978) 255–256.

    Google Scholar 

  53. S.Yu. Dobrokhotov and Yu.M. Vorob’ev, Semiclassical asymptotics for discrete models of electron-phonon interaction. Teor. Mat. Fiz. 57 (1983) 63–74; S.Yu. Dobrokhotov and Yu.M. Vorob’ev, Semiclassical asymptotics for discrete models of electron-phonon interaction. Theor. Math. Phys. 57 (1983) 993–1001.

    Google Scholar 

  54. Badulin S.I., Shrira V.I., Tsimring L.Sh. (1985) The traping and vertical focusing of internal waves in a pycnocline due to the horisontal inhomogeneities of density and currents. J. Fluid Mech. 158: 199–218

    Article  MATH  ADS  Google Scholar 

  55. Maslov V.P., (1958) Asymptotics of eigenfunctions of the equation Δu + k 2 u  =  0 with boundary conditions on equidistant curves and the scattering of electromagnetic waves in a waveguide. (in Russian). Dokl. Akad. Nauk SSSR 123: 631–633

    Google Scholar 

  56. Vorob’ev E.M., Maslov V.P., (1968) On the Single-mode open resonators. (in Russian). Dokl. Akad. Nauk SSSR 179: 558–561

    Google Scholar 

  57. Exner P., (1995) A quantum pipette. J. Phys. A: Math. Gen. 28: 5323–5330

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. Lin K., Jaffe R.L., (1996) Bound states and threshold resonances in quantum wires with circular bends. Phys. Rev. B 54: 5750–5762

    Article  ADS  Google Scholar 

  59. Dell’Antonio G.F., Tenuta L., (2004) Semiclassical analisys of constrained quantum systems. J. Phys. A: Math. Gen. 37: 5605–5624

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. A.G. Voronovich, The propagation of surface and internal gravitational waves in approximation of geometric optics. (in Russian). Izv. Akad. Nauk SSSR. Ser. Fizika Atmosfery i Okeana12 (1976) 850–857.

  61. S.Yu. Dobrokhotov, P.N. Zhevandrov, A.A. Korobkin and I.V. Sturova, Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom. In: K.-H. Hoffmann and D. Mittelmann (eds.), International Series of Numerical Mathematics 106. Basel, Berlin etc.: Birkhäuser Verlag (1992) pp.105–112.

  62. J. Brüning, S.Yu. Dobrokhotov, R.V. Nekrasov and T.Ya. Tudorovskiy, Quantum and classical dynamics of an electron in 2144 thin film. To appear in Russ. J. Math. Phys.

  63. Iijima S., (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58

    Article  ADS  Google Scholar 

  64. R. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes. London: Imperial College Press (1998) xii + 259 pp.

  65. Avouris Ph., Hertel T., Martel R., Schmidt T., Shea H.R., Walkup R.E., (1999) Carbon Nanotubes: nanomechanics, manipulation and electronic devices. Appl. Surf. Sci. 141: 201–209

    Article  Google Scholar 

  66. L.A. Chernozatonskii, E.G. Gal’pern, N.R. Serebryanaya and I.V. Stankevich, Polymers of single-wall nanotubes: geometry, diffraction patterns, and electronic spectrum modeling. In: H. Kuzmany, J. Fink, M. Mehring and S. Roth. (eds.), AIP Conf. Proc. 486. Mellville, New York: American Institute of Physics (1999) pp. 284–305.

  67. Stankevich I.V., (1996) Diversity of carbon forms: hypothesis and reality. Mol. Mat. 7: 1–12

    Google Scholar 

  68. Eletskii A.V., Carbon nanotubes. Usp. Fiz. Nauk 167 (1997) 945–972; A.V. Eletskii, Carbon nanotubes. Phys. – Usp. 40 (1997) 899–924.

  69. A.V. Eletskii, Carbon nanotubes and their emission properties. Usp. Fiz. Nauk 172 (2002) 401–438; A.V. Eletskii, Carbon nanotubes and their emission properties. Phys. – Usp. 45 (2002) 369–402.

    Google Scholar 

  70. Prinz V.Ya., Grützmacher D., Beyer A., David C., Ketterer B., Deckardt E., (2001) A new technique for fabricating three-dimensional micro- and nanostructures of various shapes. Nanotechnology 12: 399–402

    Article  ADS  Google Scholar 

  71. V. Gantmakher and Y. Levinson, Carrier Scattering in Metals and Semiconductors. Moscow: Nauka (1984) 350 pp; V. Gantmakher and Y. Levinson, Carrier Scattering in Metals and Semiconductors. In: V.M. Agranovich and A.A. Maradudin (eds.), Modern Problems in Condensed Matter Science 19. Amsterdam: North-Holland Publishing Co. (1987) xviii + 478 pp.

  72. V.V. Belov, S.Yu. Dobrokhotov and S.O. Sinitsyn, Asymptotic solutions of the Schrödinger equation in thin tubes. Trudy Instituta Matematiki i Mehaniki UrO RAN9 (2003) 1–11; V.V. Belov, S.Yu. Dobrokhotov and S.O. Sinitsyn, Asymptotic solutions of the Schrödinger equation in thin tubes. Proc. Steklov Inst. Math., suppl. 1 (2003) S13–S23.

  73. V.V. Belov, S.Yu. Dobrokhotov, S.O. Sinitsyn and T.Ya. Tudorovskii, Quasiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes. Dokl. Akad. Nauk. Ser. Mat. Fiz. 393 (2003) 460–464; V.V. Belov, S.Yu. Dobrokhotov, S.O. Sinitsyn and T.Ya. Tudorovskii, Quasiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes. Dokl. Math. Ser. Math. Phys. 68 (2003) 460–465.

  74. Belov V.V., Dobrokhotov S.Yu., Tudorovskii T.Ya., (2004) Quantum and classical dynamics of an electron in thin curved tubes with spin and external electromagnetic fields taken into account. Russ. J. Math. Phys. 11: 109–119

    MATH  MathSciNet  Google Scholar 

  75. V.M. Babich and V.S. Buldyrev, Asymptotic Methods in Short Wave Diffraction Problems. Method of Etalon Problems. Moscow: Nauka (1972) 456pp; V.M. Babič and V.S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods. In: H.K.V. Lotsch (ed.-in-chief), L.M. Brekhovskikh, L.B. Felsen and H.A. Haus (eds.), Springer Series on Wave Phenomena 4. Berlin etc.: Springer-Verlag (1991), xi + 445 pp.

  76. P.K. Rashevskii, Riemannian Geometry and Tensor Analysis. Moscow: Nauka (1967) 664pp; P.K. Rashevskii, Riemann’sche Geometrie und Tensoranalysis. Berlin: Deutscher Verlag der Wissenschaften (1959) 606 pp.

  77. Kucherenko V.V., (1974) Asymptotics of solution of the system A(x,-ih∂/∂x)u = 0 as h → 0 in the case of characteristics of variable multiplicity. (in Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 38: 625–662

    MathSciNet  Google Scholar 

  78. Gordon A., Avron J.E., (2000) Born-Oppenheimer approximation near level crossing. Phys. Rev. Lett. 85: 34–37

    Article  ADS  Google Scholar 

  79. Avron J.E., Gordon A., (2000) Born-Oppenheimer wave function near level crossing. Phys. Rev. A 62: 062504-1 – 062504-9

    Article  ADS  Google Scholar 

  80. Verdier Y. Colin de, Parisse B., (1999) Singular Bohr-Sommerfeld rules. Comm. Math. Phys. 205: 459–500

    Article  ADS  MathSciNet  Google Scholar 

  81. Hertel T., Walkup R.E., Avouris P.,(1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58: 13870–13873

    Article  ADS  Google Scholar 

  82. A.S. Davydov, Quantum Mechanics. Moscow: Fizmatgiz (1963) 748pp; A.S. Davydov, Quantum Mechanics. In: International Series of Monographs in Natural Philosophy 1. Oxford, London, Edinburgh: Pergamon Press (1965) xiii + 680 pp.

  83. B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics. Moscow: Moskow University Publ. (1982) 293pp; B.R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics. New York etc.: Gordon and Breach Science Publishers (1989) vii + 498 pp.

  84. V.V. Belov, S.Yu. Dobrokhotov and T.Ya. Tudorovskiy, Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations. Teor. Mat. Fiz. 141 (2004) 267–303; V.V. Belov, S.Yu. Dobrokhotov and T.Ya. Tudorovskiy, Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations. Theor. Math. Phys. 141 (2004) 1562–1592.

    Google Scholar 

  85. T.Ya. Tudorovskiy, On the Effect of Spin on Classical and Quantum Dynamics of an Electron in Thin Twisted Tubes, Mathematical Notes, vol. 78, no. 6, 2005, pp. 883–889. Translated from Matematicheskie Zametki, vol. 78, no. 6, 2005, pp. 948–953.

  86. A. Bensoussan, G.L. Lions and G.C. Papanicolaou, Asymptotic Analysis for Periodic structures. In: Studies in Mathematics and its Applications 5. Amsterdam: North-Holland Publishing Co. (1978) xxiv + 700 pp.

  87. V.A. Marchenko and E.Ya. Khruslov, Boundary-Value Problems in Domains with Fine-Grained Boundary. (in Russian). Kiev: Naukova Dumka (1974) 279 pp.

  88. Jikov V.V., Kozlov S.M., Oleinik O.A.,(1994) Homogenization of Differential Operators and Integral Functionals. Berlin etc, Springer-Verlag, xi + 570 pp.

    Google Scholar 

  89. V.A. Geyler and I.Yu. Popov, Ballistic transport in nanostructures: explicitly solvable model. Teor. Mat. Fiz. 107 (1996) 12–20; V.A. Geiler and I.Yu. Popov, Ballistic transport in nanostructures: explicitly solvable model. Theor. Math. Phys. 107 (1996) 427–434.

    Google Scholar 

  90. V.P. Maslov and M.V. Fedoryuk, Quasiclassical Approximation for the Equations of Quantum Mechanics. Moscow: Nauka (1976) 296pp; V.P. Maslov and M.V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics. In: Mathematical Physics and Applied Mathematics 7, Contemporary Mathematics 5. Dordrecht etc.: D. Reidel Publishing Co. (1981) ix + 301 pp.

  91. Brüning J., Dobrokhotov S.Yu., Pankrashkin K.V., The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field. Russ. J. Math. Phys. 9 (2002) 14–49 and 400–416.

    Google Scholar 

  92. N.A. Poklonski, E.F. Kislyakov, G.G Fedoruk and S.A. Vyrko, Electronic structure model of a metal-filled carbon nanotube. Fiz. Tverd. Tela 42 (2000) 1911–1916; N.A. Poklonski, E.F. Kislyakov, G.G Fedoruk and S.A. Vyrko, Electronic structure model of a metal-filled carbon nanotube. Phys. Solid State 42 (2000) 1966–1971.

    Google Scholar 

  93. Lemay S.G., Janssen J.W., van den Hout M., Mooij M., Bronikowski M.J., Willis P.A., Smalley R.E., Kouwenhoven L.P., Dekker C., (2001) Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 412: 617–620

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Belov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, V.V., Dobrokhotov, S.Y. & Tudorovskiy, T.Y. Operator separation of variables for adiabatic problems in quantum and wave mechanics. J Eng Math 55, 183–237 (2006). https://doi.org/10.1007/s10665-006-9044-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9044-3

Keywords

Navigation