Skip to main content
Log in

Multisoliton solutions of the two-component Camassa–Holm equation and its reductions

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Bäcklund transformation for an integrable two-component Camassa–Holm (\(2\)CH) equation is presented and studied. It involves both dependent and independent variables. A nonlinear superposition formula is given for constructing multisoliton, multiloop, and multikink solutions of the \(2\)CH equation. We also present solutions of the Camassa–Holm equation, the two-component Hunter–Saxton (\(2\)HS) equation, and the Hunter–Saxton equation, which all arise from solutions of the \(2\)CH equation. By appropriate limit procedures, a solution of the \(2\)HS equation is successfully obtained from that of the \(2\)CH equation, which is worked out with the method of Bäcklund transformations. By analyzing the solution, we obtain the soliton and loop solutions for \(2\)HS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

References

  1. S.-Q. Liu and Y. J. Zhang, “Deformation of semisimple bihamiltonian structures of hydrodynamic type,” J. Geom. Phys., 54, 427–453 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. Falqui, “On a two-component generalization of the CH equation” (talk given at the conference “Analytic and Geometric Theory of the Camassa–Holm Equation and Integrable Systems,” Bologna, September 22–25, 2004).

    Google Scholar 

  3. J. Schiff, “Zero curvature formulations of dual hierarchies,” J. Math. Phys., 37, 1928–1938 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett., 71, 1661–1664 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. S. Fokas, “On a class of physically important integrable equations,” Phys. D, 87, 145–150 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Fuchssteiner and A. S. Fokas, “Symplectic structures, their Bäcklund transformations and hereditary symmetries,” Phys. D, 4, 47–66 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Parker, “On the Camassa–Holm equation and a direct method of the solution. I. Bilinear form and solitary waves,” Proc. Roy. Soc. London Ser. A, 460, 2929–2957 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Parker, “On the Camassa–Holm equation and a direct method of the solution. II. Soliton solutions,” Proc. Roy. Soc. London Ser. A, 461, 3611–3632 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  9. Y. S. Li and J. E. Zhang, “The multiple-soliton solution of the Camassa–Holm equation,” Proc. Roy. Soc. London Ser. A, 460, 2617–2627 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Y. Matsuno, “Parametric representation for the multisoliton solution of the Camassa–Holm equation,” J. Phys. Soc. Japan, 74, 1983–1987 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Y. Matsuno, “Multisoliton solutions of the two-component Camassa–Holm system and their reductions,” J. Phys. A: Math. Theor., 50, 345202, 28 pp. (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Q. Xia, R. G. Zhou, Z. J. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation,” J. Math. Phys., 57, 103502, 12 pp. (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. G. Rasin and J. Schiff, “Bäcklund transformations for the Camassa–Holm equation,” J. Nonlinear Sci., 27, 45–69 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Constantin, “On the scattering problem for the Camassa–Holm equation,” Proc. Roy. Soc. London Ser. A, 457, 953–970 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. Beals, D. H. Sattinger, and J. Szmigielski, “Acoustic scattering and the extended Korteweg–de Vries hierarchy,” Adv. Math., 140, 190–206 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Schiff, “The Camassa–Holm equation: a loop group approach,” Phys. D, 121, 24–43 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Constantin and W. A. Strauss, “Stability of peakons,” Commun. Pure Appl. Math., 53, 603–610 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Constantin and W. A. Strauss, “Stability of the Camassa–Holm solitons,” J. Nonlinear Sci., 12, 415–422 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. R. S. Johnson, “On solutions of the Camassa–Holm equation,” Proc. Roy. Soc. London Ser. A, 459, 1687–1708 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. J. Olver and P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,” Phys. Rev. E, 53, 1900–1906 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  21. D. D. Holm and R. I. Ivanov, “Two-component CH system: Inverse scattering, peakons and geometry,” Inverse Problems, 27, 045013, 19 pp. (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Constantin and R. I. Ivanov, “On an integrable two-component Camassa–Holm shallow water system,” Phys. Lett. A, 372, 7129–7132 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, (SIAM Studies in Applied Mathematics, Vol. 4), SIAM, Philadelphia, PA (1981).

    Book  MATH  Google Scholar 

  24. J. Escher, O. Lechtenfeld, and Z. Y. Yin, “Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation,” Discrete Continuous Dyn. Syst., 19, 493–513 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. L. Gui and Y. Liu, “On the global existence and wave-breaking criteria for the two- component Camassa–Holm system,” J. Funct. Anal., 258, 4251–4278 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. B. Li and Y. S. Li, “Bifurcations of travelling wave solutions for a two-component Camassa– Holm equation,” Acta. Math. Sin. (English Ser.), 24, 1319–1330 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Chen, S.-Q. Liu, and Y. J. Zhang, “A two-component generalization of the Camassa–Holm equation and its solutions,” Lett. Math. Phys., 75, 1–15 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. C.-Z. Wu, “On solutions of the two-component Camassa–Holm system,” J. Math. Phys., 47, 083513, 11 pp. (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. Lin, B. Ren, H.-M. Li, and Y.-S. Li, “Soliton solutions for two nonlinear partical differential equations using a Darboux transformation of the Lax pairs,” Phys. Rev. E, 77, 036605, 10 pp. (2008).

    Article  ADS  MathSciNet  Google Scholar 

  30. Yuqin Yao, Yehui Huang, and Yunbo Zeng, “The two-component Camassa–Holm equation with self-consistent sources and its multisoliton solutions,” Theoret. and Math. Phys., 162, 63–73 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. B. Q. Xia and Z. J. Qiao, “A new two-component integrable system with peakon solutions,” Proc. Roy. Soc. London Ser. A, 471, 20140750, 20 pp. (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  32. Q. Y. Hu and Z. Y. Yin, “Well-posedness and blow-up phenomena for a periodic two-component Camassa–Holm equation,” Proc. Roy. Soc. Edinburgh Sect. A, 141, 93–107 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Chen, S.-Q. Liu, and Y. J. Zhang, “Hamiltonian structures and their reciprocal transformations for the \(r\)-KdV-CH hierarchy,” J. Geom. Phys., 59, 1227–1243 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. G. Falqui, “On a Camassa–Holm type equation with two dependent variables,” J. Phys. A: Math. Gen., 39, 327–342 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. H. Aratyn, J. F. Gomes, and A. H. Zimerman, “On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa–Holm equation,” SIGMA, 2, 070, 12 pp. (2006).

    MathSciNet  MATH  Google Scholar 

  36. H. Aratyn, J. F. Gomes, and A. H. Zimerman, “On negative flows of the AKNS hierarchy and a class of deformations of a bihamiltonian structure of hydrodynamic type,” J. Phys. A: Math. Gen., 39, 1099–1114 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. J. B. Li and Z. J. Qiao, “Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa–Holm equations,” J. Math. Phys., 54, 123501, 14 pp. (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Z. G. Guo and Y. Zhou, “On solutions to a two-component generalized Camassa–Holm equation,” Stud. Appl. Math., 124, 307–322 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. V. Pavlov, “The Gurevich–Zybin system,” J. Phys. A: Math. Gen., 38, 3823–3840 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. S. Y. Lou, B.-F. Feng, and R. X. Yao, “Multi-soliton solution to the two-component Hunter– Saxton equation,” Wave Motion, 65, 17–28 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Yan, J.-F. Song, and C.-Z. Qu, “Nonlocal symmetries and geometric integrability of multi- component Camassa–Holm and Hunter–Saxton systems,” Chinese Phys. Lett., 28, 050204, 5 pp. (2011).

    Article  ADS  Google Scholar 

  42. C. X. Guan and Z. Y. Yin, “Global weak solutions and smooth solutions for a two-component Hunter–Saxton system,” J. Math. Phys., 52, 103707, 9 pp. (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. J. Liu and Z. Y. Yin, “Global weak solutions for a periodic two-component \(\mu\)-Hunter–Saxton system,” Monatsh. Math., 168, 503–521 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  44. B. Moon and Y. Liu, “Wave breaking and global existence for the generalized periodic two- component Hunter–Saxton system,” J. Differ. Eq., 253, 319–355 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. D. F. Zuo, “A two-component \(\mu\)-Hunter–Saxton equation,” Inverse Problems, 26, 085003, 9 pp. (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. C. H. Li, S. Q. Wen, and A. Y. Chen, “Single peak solitary wave and compacton solutions of the generalized two-component Hunter–Saxton system,” Nonlinear Dyn., 79, 1575–1585 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Moon, “Solitary wave solutions of the generalized two-component Hunter–Saxton system,” Nonlinear Anal., 89, 242–249 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  48. J. K. Hunter and R. Saxton, “Dynamics of director fields,” SIAM J. Appl. Math., 51, 1498–1521 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  49. G. H. Wang, Q. P. Liu, and H. Mao, “The modified Camassa–Holm equation: Bäcklund transformation and nonlinear superposition formula,” J. Phys. A: Math. Theor., 53, 294003, 15 pp. (2020).

    Article  MATH  Google Scholar 

  50. Hui Mao and Gaihua Wang, “Bäcklund transformations for the Degasperis–Procesi equation,” Theoret. and Math. Phys., 203, 747–750 (2020).

    Article  ADS  MATH  Google Scholar 

  51. H. Mao and Q. P. Liu, “The short pulse equation: Bäcklund transformations and applications,” Stud. Appl. Math., 145, 791–811 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Xue, Q. P. Liu, and H. Mao, “Bäcklund transformations for the modified short pulse equation and complex modified short pulse equation,” Eur. Phys. J. Plus, 137, 500 (2022).

    Article  Google Scholar 

  53. R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett., 27, 1192–1194 (1971).

    Article  ADS  MATH  Google Scholar 

  54. R. Hirota, The Direct Method in Soliton Theory, (translated from the 1992 Japanese original, Cambridge Tracts in Mathematics, Vol. 155, A. Nagai, J. Nimmo, and C. Gilson, eds.), Cambridge Univ. Press, Cambridge (2004).

    Book  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (grant Nos. 11905110 and 12001560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaihua Wang.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 214, pp. 359–386 https://doi.org/10.4213/tmf10366.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G. Multisoliton solutions of the two-component Camassa–Holm equation and its reductions. Theor Math Phys 214, 308–333 (2023). https://doi.org/10.1134/S0040577923030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923030029

Keywords

Navigation