Skip to main content
Log in

Motion of dispersive shock edges in nonlinear pulse evolution

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate a method for calculating the velocities of the edges of dispersive shock waves that are generated after wave breaking of pulses during their propagation in a nonlinear medium. The method is based on the properties of the Whitham modulation system at its degenerate limits obtained for either a vanishing amplitude of oscillations at one edge or a vanishing wave number at the other edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Sagdeev, “Cooperative phenomena and shock waves in collisionless plasmas,” Rev. Plasma Phys., 4, 23 (1966).

    ADS  Google Scholar 

  2. G. B. Whitham, “Non-linear dispersive waves,” Proc. Roy. Soc. London Ser. A, 283, 238–261 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. G. B. Whitham, Linear and Nonlinear Waves, Wiley Interscience, New York (1974).

    MATH  Google Scholar 

  4. A. V. Gurevich and L. P. Pitaevskii, “Nonstationary structure of a collisionless shock wave,” Soviet Phys. JETP, 38, 291–297 (1974).

    ADS  Google Scholar 

  5. G. A. El and M. A. Hoefer, “Dispersive shock waves and modulation theory,” Phys. D, 333, 11–65 (2016).

    Article  MathSciNet  Google Scholar 

  6. A. V. Gurevich and A. P. Meshcherkin, “Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics,” Soviet Phys. JETP, 60, 732–740.

  7. G. A. El, “Resolution of a shock in hyperbolic systems modified by weak dispersion,” Chaos, 15, 037103 (2005); arXiv:nlin/0503010v4 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  8. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, “Unsteady undular bores in fully nonlinear shallow-water theory,” Phys. Fluids, 18, 027104 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. A. El, A. Gammal, E. G. Khamis, R. A. Kraenkel, and A. M. Kamchatnov, “Theory of optical dispersive shock waves in photorefractive media,” Phys. Rev. A, 76, 053813 (2007); arXiv:0706.1112v1 [nlin.PS] (2007).

    Article  ADS  Google Scholar 

  10. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, “Transcritical shallow-water flow past topography: Finiteamplitude theory,” J. Fluid Mech., 640, 187–214 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. G. Esler and J. D. Pearce, “Dispersive dam-break and lock-exchange flows in a two-layer fluid,” J. Fluid Mech., 667, 555–585 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. A. Hoefer, “Shock waves in dispersive Eulerian fluids,” J. Nonlinear Sci., 24, 525–577 (2014); arXiv: 1303.2541v2 [nlin.PS] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Congy, A. M. Kamchatnov, and N. Pavloff, “Dispersive hydrodynamics of nonlinear polarization waves in twocomponent Bose–Einstein condensates,” SciPost Phys., 1, 006 (2016); arXiv:1607.08760v2 [cond-mat.quant-gas] (2016).

    Article  ADS  Google Scholar 

  14. M. A. Hoefer, G. A. El, and A. M. Kamchatnov, “Oblique spatial dispersive shock waves in nonlinear Schrödinger flows,” SIAM J. Appl. Math., 77, 1352–1374 (2017).

    Article  MathSciNet  Google Scholar 

  15. X. An, T. R. Marchant, and N. F. Smyth, “Dispersive shock waves governed by the Whitham equation and their stability,” Proc. Roy. Soc. London Ser. A, 474, 20180278 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. M. Kamchatnov, “Dispersive shock wave theory for nonintegrable equations,” Phys. Rev. E, 99, 012203 (2019); arXiv:1809.08553v2 [nlin.PS] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. K. Ivanov and A. M. Kamchatnov, “Evolution of wave pulses in fully nonlinear shallow-water theory,” Phys. Fluids, 31, 057102 (2019); arXiv:1903.01667v2 [nlin.PS] (2019).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 6, Fluid Mechanics, Fizmatlit, Moscow (2001); English transl. prev. ed., Pergamon, Oxford (1987).

    Google Scholar 

  19. O. Akimoto and K. Ikeda, “Steady propagation of a coherent light pulse in a dielectric medium: I,” J. Phys. A: Math. Gen., 10, 425–440 (1977)

    Article  ADS  Google Scholar 

  20. K. Ikeda and O. Akimoto, “Steady propagation of a coherent light pulse in a dielectric medium: II. The effect of spatial dispersion,” J. Phys. A: Math. Gen., 12, 1105–1120 (1979).

    Article  ADS  Google Scholar 

  21. S. A. Darmanyan, A. M. Kamchatnov, and M. Nevière, “Polariton effect in nonlinear pulse propagation,” JETP, 96, 876–884 (2003).

    Article  ADS  Google Scholar 

  22. A. V. Gurevich, A. L. Krylov, and N. G. Mazur, “Quasisimple waves in Korteweg–de Vries hydrodynamics,” Soviet Phys. JETP, 68, 966–974.

  23. V. I. Karpman, “Some asymptotic relations for solutions of the Korteweg–De Vries equation,” Phys. Lett. A, 26, 619–620 (1968).

    Article  ADS  Google Scholar 

  24. A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, “On asymptotic solutions of integrable wave equations,” Phys. Lett. A, 287, 223–232 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. M. Kamchatnov, R. A. Kraenkel, and B. A. Umarov, “Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation,” Phys. Rev. E, 66, 036609 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  26. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, “Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory,” Phys. D, 237, 2423–2435 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kamchatnov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

This research was supported by the Russian Foundation for Basic Research (Grant No. 20-01-00063).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 202, No. 3, pp. 415–424, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamchatnov, A.M. Motion of dispersive shock edges in nonlinear pulse evolution. Theor Math Phys 202, 363–370 (2020). https://doi.org/10.1134/S0040577920030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920030083

Keywords

Navigation