Skip to main content
Log in

Hannay Angles and Grassmannian Action—Angle Quantum States

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show how to derive the Hannay angles of Grassmannian classical mechanics from the evolution of Grassmannian action—angle quantum states. Just as in the commutative case, this evolution defines a geometric transport, which can also be obtained from a quantum canonical transformation or a variational principle. As examples, we explicitly construct the quantum states for the classical counterparts of a first-and second-quantized N-level system. In the latter case, these states reduce to standard fermionic coherent states and the classical Hannay angles coincide with the quantum Berry phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Roy. Soc. London Ser. A, 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. H. Hannay, “Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian,” J. Phys. A, 18, 221–230 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. V. Berry, “Classical adiabatic angles and quantal adiabatic phase,” J. Phys. A, 18, 15–27 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. Simon, “Holonomy, the quantum adiabatic theorem, and Berry’s phase,” Phys. Rev. Lett., 51, 2167–2170 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Anandan, “Geometric angles in quantum and classical physics,” Phys. Lett. A, 129, 201–207 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Bott and S. S. Chern, “Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections,” Acta Math., 114, 71–112 (1965).

    Article  MathSciNet  Google Scholar 

  7. R. Montgomery, “The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case,” Commun. Math. Phys., 120, 269–294 (1988)

    Article  ADS  Google Scholar 

  8. S. Golin, A. Knauf, and S. Marmi, “The Hannay angles: Geometry, adiabaticity, and an example,” Commun. Math. Phys., 123, 95–122 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Maamache, J.-P. Provost, and G. Vallée, “Berry’s phase, Hannay’s angle, and coherent states,” J. Phys. A: Math. Gen., 23, 5765–5775 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Maamache, J.-P. Provost, and G. Vallee, “Berry’s phase and Hannay’s angle from quantum canonical transformations,” J. Phys. A: Math. Gen., 24, 685–688 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Giavarini, E. Gozzi, D. Rohrlich, and W. D. Thacker, “Some connections between classical and quantum anholonomy,” Phys. Rev. D, 39, 3007–3015 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Casalbuoni, “On the quantization of systems with anticommuting variables,” Nuovo Cimento A, 33, 115–125 (1976); “The classical mechanics for bose—fermi systems,” Nuovo Cimento A, 33, 389–431 (1976); F. A. Berezin and M. S. Marinov, “Particle spin dynamics as the grassmann variant of classical mechanics,” Ann. Phys. (N. Y.), 104, 336–362 (1977).

    Article  ADS  Google Scholar 

  13. E. Gozzi and W. D. Thacker, “Classical adiabatic holonomy in a Grassmannian system,” Phys. Rev. D, 35, 2388–2397 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. Gozzi, D. Rohrlich, and W. D. Thacker, “Classical adiabatic holonomy in field theory,” Phys. Rev. D, 42, 2752–2762 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Abe, “Adiabatic holonomy and evolution of fermionic coherent state,” Phys. Rev. D, 39, 2327–2331 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Maamache, J. P. Provost, and G. Vallée, “Comment on ‘Adiabatic holonomy and evolution of fermionic coherent state’,” Phys. Rev. D, 46, 873–875 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Barducci, F. Buccella, R. Casalbuoni, L. Lusanna, and E. Sorace, “Quantized Grassmann variables and unified theories,” Phys. Lett. B, 67, 344–346 (1977).

    Article  ADS  Google Scholar 

  18. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford (1993).

    MATH  Google Scholar 

  19. O. Cherbal, M. Drir, M. Maamache, and D. A. Trifonov, “Fermionic coherent states for pseudo-Hermitian two-level systems,” J. Phys. A: Math. Theor., 40, 1835–1844 (2007); arXiv:quant-ph/0608177v2 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Najarbashi, M. A. Fasihi, and H. Fakhri, “Generalized Grassmannian coherent states for pseudo-Hermitian n-level systems,” J. Phys. A: Math. Theor., 43, 325301 (2010).

    Article  MathSciNet  Google Scholar 

  21. M. Combescure and D. Robert, “Fermionic coherent states,” J. Phys. A: Math. Theor., 45, 244005 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  22. D. A. Trifonov, “Nonlinear fermions and coherent states,” J. Phys. A: Math. Theor., 45, 244037 (2012); arXiv:1207.6242v1 [quant-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Lakehal or M. Maamache.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 202, No. 2, pp. 278–289, February, 2020.

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakehal, H., Maamache, M. Hannay Angles and Grassmannian Action—Angle Quantum States. Theor Math Phys 202, 243–251 (2020). https://doi.org/10.1134/S0040577920020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920020075

Keywords

Navigation