Skip to main content
Log in

Generalized Hypergeometric Solutions of the Heun Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present infinitely many solutions of the general Heun equation in terms of generalized hypergeometric functions. Each solution assumes that two restrictions are imposed on the involved parameters: acharacteristic exponent of one of the singularities must be a nonzero integer, and the accessory parameter must satisfy a polynomial equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Heun, “Zur Theorie der Riemann’schen Functionen zweiter Ordnung mit vier Verzweigungspunkten,” Math. Ann., 33, 161–179 (1889).

    Article  MathSciNet  Google Scholar 

  2. A. Ronveaux, ed., Heun’s Differential Equations, Oxford Univ. Press, New York (1995).

    MATH  Google Scholar 

  3. S. Yu. Slavyanov and W. Lay, Special Functions, Oxford Univ. Press, Oxford (2000).

    MATH  Google Scholar 

  4. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge (2010).

    MATH  Google Scholar 

  5. M. Hortaçsu, “Heun functions and some of their applications in physics,” Adv. High Energy Phys., 2018, 8621573 (2018).

    Article  MathSciNet  Google Scholar 

  6. The Heun Project, “Heun functions, their generalizations and applications,” http://theheunproject.org/bibliography.html (2019).

  7. L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge (1966).

    MATH  Google Scholar 

  8. J. Letessier, “Co-recursive associated Jacobi polynomials,” J. Comput. Appl. Math., 57, 203–213 (1995).

    Article  MathSciNet  Google Scholar 

  9. J. Letessier, G. Valent, and J. Wimp, “Some differential equations satisfied by hypergeometric functions,” in: Approximation and Computation: A Festschrift in Honor of Walter Gautschi (Intl. Ser. Numerical Math., Vol. 119, R. V. M. Zahar, ed.), Birkhäuser, Boston, Mass. (1994), pp. 371–381.

    Chapter  Google Scholar 

  10. R. S. Maier, “P-symbols, Heun identities, and 3F2 identities,” in: Special Functions and Orthogonal Polynomials (Contemp. Math., Vol. 471, D. Dominici and R. S. Maier, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 139–159.

    Article  Google Scholar 

  11. K. Takemura, “Heun’s equation, generalized hypergeometric function, and exceptional Jacobi polynomial,” J. Phys. A: Math. Theor., 45, 085211 (2012); arXiv:1106.1543v3 [math.CA] (2011).

    Article  ADS  MathSciNet  Google Scholar 

  12. T. A. Ishkhanyan, T. A. Shahverdyan, and A. M. Ishkhanyan, “Expansions of the solutions of the general Heun equation governed by two-term recurrence relations for coefficients,” Adv. High Energy Phys., 2018, 4263678 (2018).

    MathSciNet  MATH  Google Scholar 

  13. N. Svartholm, “Die Lösung der Fuchsschen Differentialgleichung zweiter Ordnung durch hypergeometrische Polynome,” Math. Ann., 116, 413–421 (1939).

    Article  MathSciNet  Google Scholar 

  14. A. Erdélyi, “Certain expansions of solutions of the Heun equation,” Quart. J. Math., Oxford Ser., os-15, 62–69 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Schmidt, “Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen,” J. Reine Angew. Math., 309, 127–148 (1979).

    MathSciNet  MATH  Google Scholar 

  16. A. M. Ishkhanyan, “Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity,” Eur. Phys. J. Plus, 133, 83 (2018); arXiv:1803.00565v1 [quant-ph] (2018).

    Article  Google Scholar 

  17. A. M. Ishkhanyan, “The third exactly solvable hypergeometric quantum-mechanical potential,” Europhys. Lett., 115, 20002 (2016); arXiv:1602.07685v1 [quant-ph] (2016).

    Article  ADS  Google Scholar 

  18. A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the general Heun functions,” Ann. Phys., 388, 456–471 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. Bargmann, “On the number of bound states in a central field of force,” Proc. Nat. Acad. Sci. USA, 38, 961–966 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Calogero, “Upper and lower limits for the number of bound states in a given central potential,” Commun. Math. Phys., 1, 80–88 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  21. R. S. Maier, “On reducing the Heun equation to the hypergeometric equation,” J. Differ. Equ., 213, 171–203 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. van Hoeij and R. Vidunas, “Belyi functions for hyperbolic hypergeometric-to-Heun transformations,” J. Algebra, 441, 609–659 (2015).

    Article  MathSciNet  Google Scholar 

  23. R. Vidunas and G. Filipuk, “Parametric transformations between the Heun and Gauss hypergeometric functions,” Funkcial. Ekvac., 56, 271–321 (2013).

    Article  MathSciNet  Google Scholar 

  24. R. Vidunas and G. Filipuk, “A classification of coverings yielding Heun-to-hypergeometric reductions,” Osaka J. Math., 51, 867–905 (2014).

    MathSciNet  MATH  Google Scholar 

  25. A. Ya. Kazakov, “Euler integral symmetry and deformed hypergeometric equation,” J. Math. Sci. (N. Y.), 185, 573–580 (2012).

    Article  MathSciNet  Google Scholar 

  26. A. Ya. Kazakov, “Monodromy of Heun equations with apparent singularities,” Internat. J. Theor. Math. Phys., 3 (6), 190–196 (2013).

    Google Scholar 

  27. S. Yu. Slavyanov, D. F. Shat’ko, A. M. Ishkhanyan, and T. A. Rotinyan, “Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients,” Theor. Math. Phys., 189, 1726–1733 (2016).

    Article  MathSciNet  Google Scholar 

  28. S. Yu. Slavyanov, “Symmetries and apparent singularities for the simplest Fuchsian equations,” Theor. Math. Phys., 193, 1754–1760 (2017).

    Article  MathSciNet  Google Scholar 

  29. S. Yu. Slavyanov and O. L. Stesik, “Antiquantization of deformed Heun-class equations,” Theor. Math. Phys., 186, 118–125 (2016).

    Article  MathSciNet  Google Scholar 

  30. A. V. Shanin and R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations,” Eur. J. Appl. Math., 13, 617–639 (2002).

    Article  MathSciNet  Google Scholar 

  31. E. S. Cheb-Terrab, “Solutions for the general, confluent, and biconfluent Heun equations and their connection with Abel equations,” J. Phys. A: Math. Theor., 37, 9923–9949 (2004); arXiv:math-ph/0404014v4 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Hautot, “Sur des combinaisons lineaires d’un nombre fini de fonctions transcendantes comme solutions d’equations différentielles du second ordre,” Bull. Soc. Roy. Sci. Liège, 40, 13–23 (1971).

    MathSciNet  MATH  Google Scholar 

  33. R. V. Craster and V. H. Hoàng, “Applications of Fuchsian differential equations to free boundary problems,” Proc. Roy. Soc. London Ser. A, 454, 1241–1252 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  34. H. V. Hoàng, J. M. Hill, and J. N. Dewynne, “Pseudo-steady-state solutions for solidification in a wedge,” IMA J. Appl. Math., 60, 109–121 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. V. Craster, “The solution of a class of free boundary problems,” Proc. Roy. Soc. London Ser. A, 453, 607–630 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Fratalocchi, A. Armaroli, and S. Trillo, “Time-reversal focusing of an expanding soliton gas in disordered replicas,” Phys. Rev. A, 83, 053846 (2011); arXiv:1104.1886v1 [nlin.PS] (2011).

    Article  ADS  Google Scholar 

  37. Q. T. Xie, “New quasi-exactly solvable periodic potentials,” J. Phys. A, 44, 285302 (2011).

    Article  MathSciNet  Google Scholar 

  38. A. M. Ishkhanyan, “Thirty five classes of solutions of the quantum time-dependent two-state problem in terms of the general Heun functions,” Eur. Phys. J. D, 69, 10 (2015); arXiv:1404.3922v2 [quant-ph] (2014).

    Article  ADS  Google Scholar 

  39. G. S. Joyce and R. T. Delves, “Exact product forms for the simple cubic lattice Green function 11,” J. Phys. A: Math. Theor., 37, 5417–5447 (2004).

    Article  ADS  Google Scholar 

  40. G. V. Kraniotis, “The Klein-Gordon-Fock equation in the curved spacetime of the Kerr-Newman (anti) de Sitter black hole,” Class. Q. Grav., 33, 225011 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ishkhanyan.

Ethics declarations

Conflicts of interest. The author declares no conflicts of interest.

Additional information

This research was supported by the Armenian State Committee of Science (SCS Grant Nos. 18RF-139 and 18T-1C276) and the Russian — Armenian (Slavonic) University at the expense of the Ministry of Education and Science of the Russian Federation.

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 202, No. 1, pp. 3–13, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishkhanyan, A.M. Generalized Hypergeometric Solutions of the Heun Equation. Theor Math Phys 202, 1–10 (2020). https://doi.org/10.1134/S0040577920010018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920010018

Keywords

Navigation