Skip to main content
Log in

Uniform Asymptotic Solution in the Form of an Airy Function for Semiclassical Bound States in One-Dimensional and Radially Symmetric Problems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider stationary scalar and vector problems for differential and pseudodifferential operators leading to the appearance of asymptotic solutions of one-dimensional problems localized in a neighborhood of intervals (“bound states”). Based on the semiclassical approximation and the Maslov canonical operator, we develop a constructive algorithm that allows writing an asymptotic solution globally under certain conditions using an Airy function of complex argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Slavyanov, Asymptotic Solutions of the One-Dimensional Schrödinger Equation [in Russian], Leningrad State Univ. Press, Leningrad (1990); English transl., Amer. Math. Soc., Providence, R. I. (1996).

    MATH  Google Scholar 

  2. R. E. Langer, “The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to a turning point,” Trans. Amer. Math. Soc., 67, (461–490) (1949).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. M. Babich, “Mathematical theory of diffraction (a survey of research carried out at the Laboratory of Mathematical Problems of Geophysics of the Leningrad Branch of the Institute of Mathematics),” Proc. Steklov Inst. Math., 175, (47–63) (1988).

    MathSciNet  MATH  Google Scholar 

  4. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of the Diffraction of Short Waves [in Russian], Nauka, Moscow (1972); English transl

    Google Scholar 

  5. V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer Ser. Wave Phenom., Vol. 4), Springer, Berlin (1991).

    Book  Google Scholar 

  6. A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York (1981).

    MATH  Google Scholar 

  7. A. M. Il’in, Matching of Asymptotic Expansions [in Russian], Nauka, Moscow (1989); English transl.

    Google Scholar 

  8. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Transl. Math. Monogr., Vol. 102), Amer. Math. Soc., Providence, R. I. (1992).

    Book  MATH  Google Scholar 

  9. A. M. Il’in and A. R. Danilin, Asymptotic Methods in Analysis [in Russian], Fizmatlit, Moscow (2009).

    MATH  Google Scholar 

  10. S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction, and Confinement of Optical Radiation, Acad. Press, Orlando, Fla. (1986).

    Google Scholar 

  11. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Nauka, Moscow (1983); English transl.

    MATH  Google Scholar 

  12. M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin (1993).

    Book  MATH  Google Scholar 

  13. F. W. J. Olver, Asymptotics and Special Functions, Acad. Press, New York (1974).

    MATH  Google Scholar 

  14. V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], Moscow Univ. Press, Moscow (1965); French transl.

    Google Scholar 

  15. V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972).

    MATH  Google Scholar 

  16. V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximation for Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1976); English transl.

    Google Scholar 

  17. V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Contemp. Math., Vol. 5), Reidel, Dordrecht (1981).

    Book  Google Scholar 

  18. C. Chester, B. Friedman, and F. Ursell, “An extension of the method of steepest descents,” Proc. Cambridge Philos. Soc., 53, (599–611) (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. V. Fedoryuk, Saddle-Point Method [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  20. M. V. Fedoryuk, Asymptotics: Integrals and Series [in Russian], Nauka, Moscow (1987).

    MATH  Google Scholar 

  21. M. V. Berry and C. J. Howls, “Chapter 36: Integrals with coalescing saddles,” in: NIST Digital Library of Mathematical Functions (https://dlmf.nist.gov/36, F. W. J. Olver et al.) (2019).

  22. V. I. Arnol’d, “Integrals of rapidly oscillating functions and singularities of projections of Lagrangian manifolds,” Funct. Anal. Appl., 6, (222–224) (1972).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. I. Arnol’d, “Normal forms for functions near degenerate critical points, the Weyl groups of A k, D k, E k, and Lagrangian singularities,” Funct. Anal. Appl., 6, (254–272) (1972).

    Article  Google Scholar 

  24. V. I. Arnold, A. N. Varchenko, and S. M. Gussein-Zade, Singularities of Differentiable Maps [in Russian], Nauka, Moscow (1982); English transl.: V. I. Arnold, S. M. Gussein-Zade, and A. N. Varchenko, Birkhäuser, Basel (1985).

    Google Scholar 

  25. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.

    MATH  Google Scholar 

  26. V. P. Maslov, Operational Methods, Mir, Moscow (1976).

    MATH  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, A Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics, Fizmatlit, Moscow (2004); English transl. prev. ed., Pergamon, Oxford (1965).

    Google Scholar 

  28. J. Brüning, S. Yu. Dobrokhotov, and K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field I,” Russ. J. Math. Phys., 9, 14–49 (2002)

    MathSciNet  MATH  Google Scholar 

  29. J. Brüning, S. Yu. Dobrokhotov, and K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field II,” Russ. J. Math. Phys., 9, (400–416) (2002).

    MathSciNet  MATH  Google Scholar 

  30. R. M. Garipov, “Nonsteady waves above an underwater ridge,” Sov. Phys. Dokl., 10, (194–196) (1965).

    ADS  MATH  Google Scholar 

  31. P. H. Le Blond and L. A. Mysak, Waves in the Ocean, Elsevier, Amsterdam (1978).

    Google Scholar 

  32. S. Yu. Dobrokhotov, “Asymptotics of surface waves captured by shores and by inhomogeneities in the bottom relief,” Dokl. Akad. Nauk SSSR, 289, (575–579) (1986).

    MathSciNet  Google Scholar 

  33. M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge (2012).

    Book  Google Scholar 

  34. K. J. A. Reijnders, D. S. Minenkov, M. I. Katsnelson, and S. Yu. Dobrokhotov, “Electronic optics in graphene in the semiclassical approximation,” Ann. Phys., 397, 65–135 (2018); arXiv:1807.02056v2 [cond-mat.mes-hall] (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. L. Hörmander, The Analysis of Linear Partial Differential Operators (Grundlehren Math. Wiss., Vol. 274), Vol. 3, Pseudo-Differential Operators, Springer, Berlin (2007).

    MATH  Google Scholar 

  36. S. Yu. Dobrokhotov and M. Rouleux, “The semiclassical Maupertuis-Jacobi correspondence and applications to linear water waves theory,” Math. Notes, 87, (430–435) (2010).

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Dobrokhotov and M. Rouleux, “The semi-classical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory,” Asymptotic Anal., 74, (33–73) (2011).

    Article  MathSciNet  MATH  Google Scholar 

  38. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989); English transl., Springer, New York (1989).

    Book  Google Scholar 

  39. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972).

    MATH  Google Scholar 

  40. V. P. Maslov, Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977); English transl.

    MATH  Google Scholar 

  41. V. P. Maslov, The Complex WKB Method for Nonlinear Equations I (Progr. Phys. Vol. 16), Birkhäuser, Basel (1994).

    Book  Google Scholar 

  42. S. Yu. Dobrokhotov, G. N. Makrakis, and V. E. Nazaikinskii, “Maslov’s canonical operator, Höormander’s formula, and localization of the Berry-Balazs solution in the theory of wave beams,” Theor. Math. Phys., 180, (894–916) (2014).

    Article  MATH  Google Scholar 

  43. S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Efficient formulas for the canonical operator near a simple caustic,” Russ. J. Math. Phys., 25, (545–552) (2018).

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Yu. Dobrokhotov and P. N. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves: I. Main constructions and equations for surface gravity waves,” Russ. J. Math. Phys., 10, (1–31) (2003).

    MathSciNet  MATH  Google Scholar 

  45. S. Yu. Dobrokhotov, D. S. Minenkov, and S. B. Shlosman, “Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber,” Theor. Math. Phys., 197, (1626–1634) (2018).

    Article  MATH  Google Scholar 

  46. B. Helffer, P. Kerdelhué, and J. Sjöstrand, Le papillon de Hofstadter revisité (Memoires de la D. M. F. 2nd Ser., Vol. 43), Société mathematique de France, Paris (1990).

    Book  MATH  Google Scholar 

  47. V. S. Buslaev and A. A. Fedotov, “The complex WKB method for the Harper equation,” St. Petersburg Math. J., 6, (495–517) (1995).

    MathSciNet  Google Scholar 

  48. A. A. Fedotov and E. V. Shchetka, “Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial,” St. Petersburg Math. J., 29, (363–381) (2018).

    Article  MathSciNet  MATH  Google Scholar 

  49. A. A. Fedotov and E. V. Shchetka, “Semiclassical asymptotics of the spectrum of the subcritical Harper operator,” Math. Notes, 104, (933–938) (2018).

    Article  MathSciNet  MATH  Google Scholar 

  50. V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics,” J. Engrg. Math., 55, (83–237) (2006).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii or A. V. Tsvetkova.

Ethics declarations

Conflicts of interest. The authors declare no conflicts of interest.

Additional information

This research is supported by a grant from the Russian Science Foundation (Project No. 16-11-10282).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 201, No. 3, pp. 382–414, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.Y., Dobrokhotov, S.Y., Nazaikinskii, V.E. et al. Uniform Asymptotic Solution in the Form of an Airy Function for Semiclassical Bound States in One-Dimensional and Radially Symmetric Problems. Theor Math Phys 201, 1742–1770 (2019). https://doi.org/10.1134/S0040577919120079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919120079

Keywords

Navigation