Skip to main content
Log in

Higher Hirota Difference Equations and Their Reductions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We previously proposed an approach for constructing integrable equations based on the dynamics in associative algebras given by commutator relations. In the framework of this approach, evolution equations determined by commutators of (or similarity transformations with) functions of the same operator are compatible by construction. Linear equations consequently arise, giving a base for constructing nonlinear integrable equations together with the corresponding Lax pairs using a special dressing procedure. We propose an extension of this approach based on introducing higher analogues of the famous Hirota difference equation. We also consider some (1+1)-dimensional discrete integrable equations that arise as reductions of either the Hirota difference equation itself or a higher equation in its hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hirota, “Nonlinear partial difference equations: II. Discrete-time Toda equations,” J. Phys. Soc. Japan, 43, 2074–2078 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. R. Hirota, “Discrete analogue of a generalized Toda equation,” J. Phys. Soc. Japan, 50, 3785–3791 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Miwa, “On Hirota’s difference equation,” Proc. Japan Acad. Ser. A, 58, 9–12 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. V. Bogdanov and B. G. Konopelchenko, “Analytic-bilinear approach to integrable hierarchies: I. Generalized KP hierarchy,” J. Math. Phys., 39, 4683–4700 (1998)

    Google Scholar 

  5. “Analytic-bilinear approach to integrable hierarchies: II. Multicomponent KP and 2D Toda lattice hierarchies,” J. Math. Phys., 39, 4701–4728 (1998).

  6. A. V. Zabrodin, “A survey of Hirota’s difference equations,” Theor. Math. Phys., 113, 1347–1392 (1997).

    Article  Google Scholar 

  7. A. V. Zabrodin, “Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz,” Theor. Math. Phys., 155, 567–584 (2008); arXiv:0705.4006v1 [hep-th] (2007).

    Article  MATH  Google Scholar 

  8. S. Saito, “Octahedral structure of the Hirota–Miwa equation,” J. Nonlinear Math. Phys., 19, 1250032 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  9. J. J. C. Nimmo, “On a non-Abelian Hirota–Miwa equation,” J. Phys. A: Math. Gen., 39, 5053–5065 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. R. Gibson, J. J. C. Nimmo, and Y. Ohta, “Quasideterminant solutions of a non-Abelian Hirota–Miwa equation,” J. Phys. A: Math. Theor., 40, 12607–12617 (2007); arXiv:nlin/0702020v1 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Doliwa, “The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system,” Phys. Lett. A, 375, 1219–1224 (2011); arXiv:1006.3380v1 [nlin.SI] (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. I. Krichever, P. Wiegmann, and A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems,” Commun. Math. Phys., 193, 373–396 (1998); arXiv:hep-th/9704090v1 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations,” Theor. Math. Phys., 154, 405–417 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. K. Pogrebkov, “Hirota difference equation and a commutator identity on an associative algebra,” St. Petersburg Math. J., 22, 473–483 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation, and its reductions,” Theor. Math. Phys., 187, 823–834 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. E. Zakharov and E. I. Schulman, “Degenerative dispersion laws, motion invariants, and kinetic equations,” Phys. D, 1, 192–202 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. K. Pogrebkov, “2D Toda chain and associated commutator identity,” in: Geometry, Topology, and Mathematical Physics: S. P. Novikov’s Seminar 2006–2007 (Amer. Math. Soc. Transl. Ser. 2, Vol. 224, V. M. Buchstaber and I. M. Krichever, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 261–270.

    Google Scholar 

  18. F. W. Nijhoff, H. W. Capel, G. L. Wiersma, and G. R. W. Quispel, “Bäcklund transformations and threedimensional lattice equations,” Phys. Lett. A, 105, 267–272 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Nijhoff and H. Capel, “The discrete Korteweg–de Vries equation,” Acta Appl. Math., 39, 133–158 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Konstantinou-Rizos and T. E. Kouloukas, “A noncommutative discrete potential KdV lift,” J. Math. Phys., 59, 063506 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. K. Pogrebkov, “Symmetries of the Hirota difference equation,” SIGMA, 13, 053 (2017).

    MathSciNet  MATH  Google Scholar 

  22. V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem: I,” Funct. Anal. Appl., 8, 226–235 (1974).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pogrebkov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 197, No. 3, pp. 444–463, December, 2018.

This research is supported by a grant from the Russian Science Foundation (Project No. 14-50-00005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogrebkov, A.K. Higher Hirota Difference Equations and Their Reductions. Theor Math Phys 197, 1779–1796 (2018). https://doi.org/10.1134/S0040577918120085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918120085

Keywords

Navigation