Skip to main content
Log in

Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a biorthogonal formalism for non-Hermitian multimode and multiphoton Jaynes–Cummings models. For these models, we define supersymmetric generators, which are especially convenient for diagonalizing the Hamiltonians. The Hamiltonian and its adjoint are expressed in terms of supersymmetric generators having the Lie superalgebra properties. The method consists in using a similarity dressing operator that maps onto spaces suitable for diagonalizing Hamiltonians even in an infinite-dimensional Hilbert space. We then successfully solve the eigenproblems related to the Hamiltonian and its adjoint. For each model, the eigenvalues are real, while the eigenstates do not form a set of orthogonal vectors. We then introduce the biorthogonality formalism to construct a consistent theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Moiseyev, “Quantum theory of resonances: Calculating energies, widths, and cross-sections by complex scaling,” Phys. Rep., 302, 211–293 (1998).

    Article  ADS  Google Scholar 

  2. J. Okolowicz, M. Ploszajczak, and I. Rotter, “Dynamics of quantum systems embedded in a continuum,” Phys. Rep., 374, 271–383 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge Univ. Press, Cambridge (2011).

    Book  MATH  Google Scholar 

  4. F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, “Quasi-Hermitian operators in quantum mechanics and the variational principle,” Ann. Phys., 213, 74–101 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. B. Geyer, W. D. Heiss, and F. G. Scholtz, “The physical interpretation of non-Hermitian Hamiltonians and other observables,” Canadian J. Phys., 86, 1195–1201 (2008).

    Article  ADS  Google Scholar 

  6. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Progr. Phys., 70, 947–1018 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics,” Internat. J. Geom. Methods Mod. Phys., 7, 1191–1306 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Znojil, “Three-Hilbert-space formulation of quantum mechanics,” SIGMA, 5, 001 (2009).

    MathSciNet  MATH  Google Scholar 

  9. T. Curtright and L. Mezincescu, “Biorthogonal quantum systems,” J. Math. Phys., 48, 092106 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D. C. Brody, “Biorthogonal quantum mechanics,” J. Phys. A: Math. Theor., 47, 035305 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. F. Bagarello, “Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces,” Ann. Phys., 362, 424–435 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. F. Bagarello and A. Fring, “Generalized Bogoliubov transformations versus D-pseudo-bosons,” J. Math. Phys., 56, 103508 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. F. Bagarello, “Some results on the dynamics and transition probabilities for non self-adjoint Hamiltonians,” Ann. Phys., 356, 171–184 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. Bagarello, M. Luttuca, R. Passante, L. Rizzuto, and S. Spagnolo, “Non-Hermitian Hamiltonian for a modulated Jaynes–Cummings model with PT symmetry,” Phys. Rev. A, 91, 042134 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, and M. Znojil, eds., Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, Wiley, New York (2015).

    MATH  Google Scholar 

  16. F. Bagarello, “Pseudobosons, Riesz bases, and coherent states,” J. Math. Phys., 51, 023531 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. F. Bagarello, “Pseudo-bosons from Landau levels,” SIGMA, 6, 093 (2010).

    MathSciNet  MATH  Google Scholar 

  18. F. Bagarello, “Pseudo-bosons, so far,” Rep. Math. Phys., 68, 175–210 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. P. Carbonaro, G. Compagno, and F. Persico, “Canonical dressing of atoms by intense radiation fields,” Phys. Lett. A, 73, 97–99 (1979).

    Article  ADS  Google Scholar 

  20. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett., 44, 1323–1326 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Krivec and V. B. Mandelzweig, “Nonvariational calculation of the sticking probability and fusion rate for the µdt molecular ion,” Phys. Rev. A, 52, 221–226 (1995).

    Article  ADS  Google Scholar 

  22. K. Wódkiewicz, P. L. Knight, S. J. Buckle, and S. M. Barnett, “Squeezing and superposition states,” Phys. Rev. A, 35, 2567–2577 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Imamol˜glu and S. E. Harris, “Lasers without inversion: Interference of dressed lifetime-broadened states,” Opt. Lett., 14, 1344–1346 (1989).

    Article  ADS  Google Scholar 

  24. I. I. Rabi, “On the process of space quantization,” Phys. Rev., 49, 324–328 (1936)

    Article  ADS  MATH  Google Scholar 

  25. “Space quantization in a gyrating magnetic field,” Phys. Rev., 51, 652–654 (1937).

  26. A. F. Dossa and G. Y. H. Avossevou, “Full spectrum of the two-photon and the two-mode quantum Rabi models,” J. Math. Phys., 55, 102104 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. F. Cooper, A. Khare, and U. Sukhatme, “Supersymmetry and quantum mechanics,” Phys. Rep., 251, 267–385 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Dutt, A. Khare, and U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials,” Am. J. Phys., 56, 163–168 (1988).

    Article  ADS  Google Scholar 

  29. H.-Y. Fan and L.-S. Li, “Supersymmetric unitary operator for some generalized Jaynes–Cummings models,” Commun. Theor. Phys., 25, 105–110 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  30. H.-Y. Fan, “Representation and transformation theory in quantum mechanics,” in: Progress of Dirac’s Symbolic Method, Scientific and Technical Univ. Press, Shanghai (1997), p.181.

    Google Scholar 

  31. E. Brian Davies, Linear Operators and their Spectra (Cambridge Stud. Adv. Math., Vol. 106), Cambridge Univ. Press, Cambridge (2007).

    Book  MATH  Google Scholar 

  32. P. E. G. Assis, “Non-Hermitian Hamiltonians in field theory,” Doctoral dissertation, City Univ. London, London (2009).

    Google Scholar 

  33. H.-X. Lu, X.-Q. Wang, and Y.-D. Zhang, “Exact solution for super–Jaynes–Cummings model,” Chinese Phys., 9, 325–328 (2000).

    Article  ADS  Google Scholar 

  34. J. Yang, W.-L. Yu, and A.-P. Xiang, “Exact solution for Jaynes–Cummings model with bosonic field nonlinearity and strong boson–fermion coupling,” Commun. Theor. Phys., 45, 143–146 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T.-Q. Song and Y.-J. Zhu, “Solving generalized non-degenerate two-mode two-photon Jaynes–Cummings model by supersymmetric unitary transformation,” Commun. Theor. Phys., 38, 85–88 (2002).

    Article  ADS  Google Scholar 

  36. H.-X. Lu and X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation,” Chinese Phys., 9, 568–571 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Hounguevou.

Additional information

The research of J. V. Hounguevou is supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique of the Republic of Benin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hounguevou, J.V., Dossa, F.A. & Avossevou, G.Y.H. Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models. Theor Math Phys 193, 1464–1479 (2017). https://doi.org/10.1134/S0040577917100051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917100051

Keywords

Navigation