Skip to main content
Log in

Full Analytic Spectrum of Generalized Jaynes-Cummings Hamiltonians

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop an analytic formalism using basic quantum mechanics techniques to successfully solve the multiphoton Jaynes–Cummings and the generalized Dicke Hamiltonians. For this, we split the Hamiltonians of these models into two operators that have the properties of constants of motion for these systems. We then use some well-known operator properties to obtain complete analytic spectra for the considered models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Rabi, “On the process of space quantization,” Phys. Rev., 49, 324–328 (1936); “Space quantization in a gyrating magnetic field,”, 51, 652–654 (1937).

    Article  ADS  MATH  Google Scholar 

  2. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE, 51, 89–109 (1963).

    Article  Google Scholar 

  3. P. Carbonaro, G. Compagno, and F. Persico, “Canonical dressing of atoms by intense radiation fields,” Phys. Lett. A, 73, 97–99 (1979).

    Article  ADS  Google Scholar 

  4. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett., 44, 1323–1326 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. R. Krivec and V. B. Mandelzweig, “Nonvariational calculation of the sticking probability and fusion rate for the ídt molecular ion,” Phys. Rev. A, 52, 221–226 (1995).

    Article  ADS  Google Scholar 

  6. K. Wãodkiewicz, P. L. Knight, S. J. Buckle, and S. M. Barnett, “Squeezing and superposition states,” Phys. Rev. A, 35, 2567–2577 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Imamol˜glu and S. E. Harris, “Lasers without inversion: Interference of dressed lifetime-broadened states,” Opt. Lett., 14, 1344–1346 (1989).

    Article  ADS  Google Scholar 

  8. E. A. Kochetov, “Exactly solvable non-linear generalisations of the Jaynes–Cummings model,” J. Phys. A: Math. Gen., 20, 2433–2442 (1987).

    Article  ADS  Google Scholar 

  9. V. Buzek, “On the non-linear Jaynes–Cummings model: The path-integral approach,” Czech. J. Phys. B, 39, 757–765 (1989).

    Article  ADS  Google Scholar 

  10. S. C. Gou, “Characteristic oscillations of phase properties for pair coherent states in the two-mode Jaynes–Cummings-model dynamics,” Phys. Rev. A, 48, 3233–3241 (1993).

    Article  ADS  Google Scholar 

  11. E. Choreño, D. Ojeda-Guillén, M. Salazar-Ramírez, and V. D. Granados, “Two-mode generalization of the Jaynes–Cummings and anti-Jaynes–Cummings models,” Ann. Phys., 387, 121–134 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Chaichian, D. Ellinas, and P. Kulish, “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model,” Phys. Rev. Lett., 65, 980–983 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. F. Dossa and G. Y. H. Avossevou, “Full spectrum of the two-photon and the two-mode quantum Rabi models,” J. Math. Phys., 55, 102104 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L. Lamata, J. Casanova, R. Gerritsma, C. F. Roos, J. J. García-Ripoll, and E. Solano, “Relativistic quantum mechanics with trapped ions,” New J. Phys., 13, 095003 (2011).

    Article  ADS  Google Scholar 

  15. A. Retzker, E. Solano, and B. Reznik, “Tavis–Cummings model and collective multiqubit entanglement in trapped ions,” Phys. Rev. A, 75, 022312 (2007).

    Article  ADS  Google Scholar 

  16. W. Kopylov, M. Radonjić, T. Brandes, A. Balaž, and A. Pelster, “Dissipative two-mode Tavis–Cummings model with time-delayed feedback control,” Phys. Rev. A, 92, 063832 (2015).

    Article  ADS  Google Scholar 

  17. B. Buck and C. V. Sukumar, “Exactly soluble model of atom-phonon coupling showing periodic decay and revival,” Phys. Lett. A, 81, 132–135 (1981).

    Article  ADS  Google Scholar 

  18. C. C. Gerry, “Two-photon Jaynes–Cummings model interacting with the squeezed vacuum,” Phys. Rev. A, 37, 2683–2686 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes–Cummings model in a Kerr-like medium,” Phys. Rev. A, 45, 5056–5060 (1992).

    Article  ADS  Google Scholar 

  20. V. Bartzis and N. Nayak, “Two-photon Jaynes–Cummings model,” J. Opt. Soc. Amer. B, 8, 1779–1786 (1991).

    Article  ADS  Google Scholar 

  21. P. Zhou and J. S. Peng, “Dipole squeezing in the two-photon Jaynes–Cummings model with superposition state preparation,” Phys. Rev. A, 44, 3331–3335 (1991).

    Article  ADS  Google Scholar 

  22. T. Nasreen and M. S. K. Razmi, “Atomic emission and cavity field spectra for a two-photon Jaynes–Cummings model in the presence of the Stark shift,” J. Opt. Soc. Amer. B, 10, 1292–1300 (1993).

    Article  ADS  Google Scholar 

  23. K. M. Ng, C. F. Lo, and K. L. Liu, “Exact eigenstates of the two-photon Jaynes–Cummings model with the counter-rotating term,” Eur. Phys. J. D, 6, 119–126 (1999).

    Article  ADS  Google Scholar 

  24. C. V. Sukumar and B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model,” Phys. Lett. A., 83, 211–213 (1981).

    Article  ADS  Google Scholar 

  25. H. R. Baghshahi, M. K. Tavassoly, and A. Behjat, “Entropy squeezing and atomic inversion in the k-photon Jaynes–Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach,” Chinese Phys. B, 23, 074203 (2014).

    Article  Google Scholar 

  26. R. Koc, H. Tütünculer, M. Koca, and E. Olgar, “Algebraic treatments of the problems of the spin-1/2 particles in the one and two-dimensional geometry: A systematic study,” Ann. Phys., 319, 333–347 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. H. Panahi and S. A. Rad, “Two and k-photon Jaynes–Cummings models and Dirac oscillator problem in Bargmann–Segal representation,” Int. J. Theor. Phys., 52, 4068–4073 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Cooper, A. Khare, and U. Sukhateme, “Supersymmetry and quantum mechanics,” Phys. Rep., 251, 267–385 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Dutt, A. Khare, and U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials,” Amer. J. Phys., 56, 163–168 (1988).

    Article  ADS  Google Scholar 

  30. Y. A. Gol’fand and E. P. Likhtman, “Extension of the algebra of Poincare group generators and violation of P invariance,” JETP Lett., 13, 323–326 (1971).

    ADS  Google Scholar 

  31. D. V. Volkov and V. P. Akulov, “Possible universal neutrino interaction,” JETP Lett., 16, 438–440 (1972).

    ADS  MATH  Google Scholar 

  32. P. Ramond, “Dual theory for free fermions,” Phys. Rev. D, 3, 2415–2418 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Neveu and J. Schwarz, “Factorizable dual model of pions,” Nucl. Phys. B, 31, 86-12 (1971).

    Article  ADS  Google Scholar 

  34. J. Wess and B. Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B, 70, 39–50 (1974); “Supergauge invariant extension of quantum electrodynamics,” Nucl. Phys. B, 78, 1–13 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  35. H.-Y. Fan and L.-S. Li, “Supersymmetric unitary operator for some generalized Jaynes–Cummings models,” Commun. Theor. Phys., 25, 105–110 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  36. J. V. Hounguevou, F. A. Dossa, and G. Y. Avossevou, “Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models,” Theor. Math. Phys., 193, 1464–1479 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  37. H.-X. Lu and X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation,” Chinese Phys., 9, 1009–1963 (2000).

    Google Scholar 

  38. E. Choreño, D. Ojeda-Guillén, and V. D. Granados, “Matrix diagonalization and exact solution of k-photon Jaynes–Cummings model,” Eur. Phys. J. D, 72, 142 (2018); arXiv:1803.03206v1 [quant-ph] (2018).

    Article  ADS  Google Scholar 

  39. G. Petiau, “Sur la détermination des fonctions d’ondes du corpuscule de spin ℒ en interaction avec un champ magnitique ou electrique constant,” J. Phys. Radium, 17, 956–964 (1956).

    Article  MathSciNet  Google Scholar 

  40. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), U.S. Government Printing Office, Washington, D. C. (1964).

    Google Scholar 

  41. A. Maggitti, M. Radonjić, and B. M. Jelenković, “Dark-polariton bound pairs in the modified Jaynes–Cummings–Hubbard model,” Phys. Rev. A, 93, 013835 (2016).

    Article  ADS  Google Scholar 

  42. Ts. Gantsog, A. Joshi, and R. Tanas, “Phase properties of one- and two-photon Jaynes–Cummings models with a Kerr medium,” Quantum Semiclass. Opt., 8, 445–456 (1996).

    Article  ADS  Google Scholar 

  43. B. M. Rodríguez-Lara and H. M. Moya-Cessa, “The exact solution of generalized Dicke models via Susskind–Glogower operators,” J. Phys. A: Math. Theor., 46, 095301 (2013); arXiv:1207.6551v2 [quant-ph] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referee for a thorough review and the relevant comments that have helped to improve the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. J. Adanmitonde or G. Y. H. Avossevou.

Ethics declarations

Conflicts of interest. The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 201, No. 1, pp. 105–117, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adanmitonde, A.J., Avossevou, G.Y.H. Full Analytic Spectrum of Generalized Jaynes-Cummings Hamiltonians. Theor Math Phys 201, 1503–1513 (2019). https://doi.org/10.1134/S0040577919100076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919100076

Keywords

Navigation