Skip to main content
Log in

The property of maximal transcendentality: Calculation of Feynman integrals

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider examples of two-loop two- and three-point Feynman integrals for which the calculation results have the property of maximal transcendentality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL equations in the N=4 supersymmetric gauge theory,” Nucl. Phys. B, 661, 19–61 (2003); Erratum, 685, 405–407 (2004); arXiv:hep-ph/0112346v1 (2001).

    Article  ADS  MATH  Google Scholar 

  2. L. N. Lipatov, “Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories,” Sov. J. Nucl. Phys., 23, 338–345 (1976)

    Google Scholar 

  3. V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, “On the Pomeranchuk singularity in asymptotically free theories,” Phys. Lett. B, 60, 50–52 (1975)

    Article  ADS  Google Scholar 

  4. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, “Multiregge processes in the Yang–Mills theory,” JETP, 44, 443–451; “The Pomeranchuk singularity in nonabelian gauge theories,” JETP, 45, 199–204 (1977)

    ADS  Google Scholar 

  5. I. I. Balitsky and L. N. Lipatov, “The Pomeranchuk singularity in quantum chromodynamics,” Sov. J. Nucl. Phys., 28, 822–829 (1978)

    Google Scholar 

  6. Ya. Ya. Balitskii and L. N. Lipatov, “Calculation of the meson–meson interaction cross section in quantum chromodynamics,” JETP Lett., 30, 355–358 (1979).

    ADS  Google Scholar 

  7. V. S. Fadin and L. N. Lipatov, “BFKL pomeron in the next-to-leading approximation,” Phys. Lett. B, 429, 127–134 (1998)

    Article  ADS  Google Scholar 

  8. M. Ciafaloni and G. Camici, “Energy scale(s) and next-to-leading BFKL equation,” Phys. Lett. B, 430, 349–354 (1998).

    Article  ADS  Google Scholar 

  9. L. Brink, J. H. Schwarz, and J. Scherk, “Supersymmetric Yang–Mills theories,” Nucl. Phys. B, 121, 77–92 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Gliozzi, J. Scherk, and D. I. Olive, “Supersymmetry, supergravity theories, and the dual spinor model,” Nucl. Phys. B, 122, 253–290 (1977).

    Article  ADS  Google Scholar 

  11. A. V. Kotikov, L. N. Lipatov, and V. N. Velizhanin, “Anomalous dimensions of Wilson operators in N=4 SYM theory,” Phys. Lett. B, 557, 114–120 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, and V. N. Velizhanin, “Three-loop universal anomalous dimension of the Wilson operators in N=4 SUSY Yang–Mills model,” Phys. Lett. B, 595, 521–529 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. L. Bianchi, V. Forini, and A. V. Kotikov, “On DIS Wilson coefficients in N=4 super Yang–Mills theory,” Phys. Lett. B, 725, 394–401 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Moch, J. A. M. Vermaseren, and A. Vogt, “The three-loop splitting functions in QCD: The non-singlet case,” Nucl. Phys. B, 688, 101–134 (2004)

    Article  ADS  MATH  Google Scholar 

  15. J. A. M. Vermaseren, A. Vogt, and S. Moch, “The third-order QCD corrections to deep-inelastic scattering by photon exchange,” Nucl. Phys. B, 724, 3–182 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D. J. Broadhurst, “The master two loop diagram with masses,” Z. Phys. C, 47, 115–124 (1990).

    Article  Google Scholar 

  17. J. Fleischer, A. V. Kotikov, and O. L. Veretin, “Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass,” Nucl. Phys. B, 547, 343–374 (1999); “Applications of the large mass expansion,” Acta Phys. Polon. B, 29, 2611–2625 (1998).

    Article  ADS  Google Scholar 

  18. B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “Hidden symmetry of four-point correlation functions and amplitudes in N=4 SYM,” Nucl. Phys. B, 862, 193–231 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L. J. Dixon, “Scattering amplitudes: The most perfect microscopic structures in the universe,” J. Phys. A, 44, 454001 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L. J. Dixon, J. M. Drummond, and J. M. Henn, “Analytic result for the two-loop six-point NMHV amplitude in N=4 super Yang–Mills theory,” JHEP, 01, 024 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. T. Gehrmann, J. M. Henn, and T. Huber, “The three-loop form factor in N=4 super Yang–Mills,” JHEP, 03, 101 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Brandhuber, G. Travaglini, and G. Yang, “Analytic two-loop form factors in N=4 SYM,” JHEP, 1205, 082 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. M. Henn, S. Moch, and S. G. Naculich, “Form factors and scattering amplitudes in N=4 SYM in dimensional and massive regularizations,” JHEP, 1112, 024 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. O. Schlotterer and S. Stieberger, “Motivic multiple zeta values and superstring amplitudes,” J. Phys. A, 46, 475401 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. Broedel, O. Schlotterer, and S. Stieberger, “Polylogarithms, multiple zeta values, and superstring amplitudes,” Fortsch. Phys., 61, 812–870 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Stieberger and T. R. Taylor, “Maximally helicity violating disk amplitudes, twistors, and transcendental integrals,” Phys. Lett. B, 716, 236–239 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Eden, “Three-loop universal structure constants in N=4 SYSY Yang–Mills theory,” arXiv:1207.3112v1 [hepth] (2012)

  28. R. G. Ambrosio, B. Eden, T. Goddard, P. Heslop, and C. Taylor, “Local integrands for the five-point amplitude in planar N=4 SYM up to five loops,” JHEP, 1501, 116 (2015)

    Article  ADS  Google Scholar 

  29. D. Chicherin, R. Doobary, B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “Bootstrapping correlation functions in N=4 SYM,” JHEP, 1603, 031 (2016);arXiv:1506.04983v1 [hep-th] (2015)

    Article  ADS  Google Scholar 

  30. B. Eden and A. Sfondrini, “Three-point functions in N=4 SYM: The hexagon proposal at three loops,” JHEP, 1602, 165 (2016);arXiv:1510.01242v3 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. V. Kotikov, “The property of maximal transcendentality in the N=4 supersymmetric Yang–Mills,” in: Subtleties in Quantum Field Theory: Lev Lipatov Festschrift (D. Diakonov, ed.), Petersburg Nucl. Phys. Inst., Gatchina (2010), pp. 150–174; arXiv:1005.5029v1 [hep-th] (2010); “The property of maximal transcendentality: Calculation of anomalous dimensions in the N=4 SYM and master integrals,” Phys. Part. Nucl., 44, 374–385 (2013).

    Google Scholar 

  32. D. I. Kazakov and A. V. Kotikov, “Uniqueness method: Multiloop calculations in QCD,” Theor. Math. Phys., 73, 1264–1274 (1987); “Total as correction to the deep-inelastic scattering cross-sections ratio R = sL/sT in QCD,” Nucl. Phys. B, 307, 721–762 (1988); Erratum, 345, 299–300 (1990).

    Article  Google Scholar 

  33. A. V. Kotikov, “Method of calculating the moments of the structure functions of deep inelastic scattering in quantum chromodynamics,” Theor. Math. Phys., 78, 134–143 (1989).

    Article  MathSciNet  Google Scholar 

  34. A. V. Kotikov, “The Gegenbauer polynomial technique: The evaluation of a class of Feynman diagrams,” Phys. Lett. B, 375, 240–248 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. D. I. Kazakov, “Analytical methods for multiloop calculations: Two lectures on the method of uniqueness,” Preprint JINR E2-84-410, Joint Inst. Nucl. Res., Dubna (1984).

    Google Scholar 

  36. K. G. Chetyrkin and F. V. Tkachov, “Integration by parts: The algorithm to calculate ß-functions in 4 loops,” Nucl. Phys. B, 192, 159–204 (1981)

    Article  ADS  Google Scholar 

  37. F. V. Tkachov, “A theorem on analytical calculability of 4-loop renormalization group functions,” Phys. Lett. B, 100, 65–68 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. N. Vasil’ev, Yu. M. Pis’mak, and Yu. R. Khonkonen, “1/n Expansion: Calculation of the exponents in the order 1/n2 for arbitrary number of dimensions,” Theor. Math. Phys., 47, 465–475 (1981).

    Article  Google Scholar 

  39. D. I. Kazakov and A. V. Kotikov, “On the value of the as-correction to the Callan–Gross relation,” Phys. Lett. B, 291, 171–176 (1992).

    Article  ADS  Google Scholar 

  40. A. V. Kotikov, “New method of massive Feynman diagrams calculation,” Modern Phys. Lett. A, 6, 677–692 (1991); “New method of massive Feynman diagrams calculation: Vertex type functions,” Internat. J. Modern Phys. A, 7, 1977–1991 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J. M. Henn and J. C. Plefka, Scattering Amplitudes in Gauge Theories (Lect. Notes Phys., Vol. 883), Springer, Berlin (2014).

    Book  MATH  Google Scholar 

  42. A. V. Kotikov, “Differential equations method: New technique for massive Feynman diagrams calculation,” Phys. Lett. B, 254, 158–164 (1991); “Differential equations method: The calculation of vertex type Feynman diagrams,” Phys. Lett. B, 259, 314–322 (1991); “Differential equation method: The calculation of N point Feynman diagrams,” Phys. Lett. B, 267, 123–127 (1991); “New method of massive N point Feynman diagrams calculation,” Modern Phys. Lett. A, 6, 3133–3141 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. E. Remiddi, “Differential equations for Feynman graph amplitudes,” Nuovo Cimento A, 110, 1435–1452 (1997).

    ADS  Google Scholar 

  44. B. A. Kniehl, A. V. Kotikov, A. I. Onishchenko, and O. L. Veretin, “Two-loop sunset diagrams with three massive lines,” Nucl. Phys. B, 738, 306–316 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. B. A. Kniehl and A. V. Kotikov, “Calculating four-loop tadpoles with one non-zero mass,” Phys. Lett. B, 638, 531–537 (2006); “Counting master integrals: Integration-by-parts procedure with effective mass,” Phys. Lett. B, 712, 233–234 (2012).

    Article  ADS  Google Scholar 

  46. J. Fleischer, M. Yu. Kalmykov, and A. V. Kotikov, “Two-loop self-energy master integrals on shell,” Phys. Lett. B, 462, 169–177 (1999).

    Article  ADS  Google Scholar 

  47. J. Fleischer, A. V. Kotikov, and O. L. Veretin, “The differential equation method: Calculation of vertex-type diagrams with one non-zero mass,” Phys. Lett. B, 417, 163–172 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Kotikov, J. H. KÜhn, and O. Veretin, “Two-loop formfactors in theories with mass gap and Z-boson production,” Nucl. Phys. B, 788, 47–62 (2008).

    Article  ADS  Google Scholar 

  49. A. V. Kotikov, “The property of maximal transcendentality: Calculation of master integrals,” Theor. Math. Phys., 176, 913–921 (2013); arXiv:1212.3732v1 [hep-ph] (2012).

    Article  MathSciNet  MATH  Google Scholar 

  50. B. A. Kniehl, A. V. Kotikov, Z. V. Merebashvili, and O. L. Veretin, “Strong-coupling constant with flavor thresholds at five loops in the modified minimal-subtraction scheme,” Phys. Rev. Lett., 97, 042001 (2006);“Heavy-quark pair production in polarized photon-photon collisions at next-to-leading order: Fully integrated total cross sections,” Phys. Rev. D, 79, 114032 (2009)

    Article  ADS  Google Scholar 

  51. B. A. Kniehl, A. V. Kotikov, and O. L. Veretin, “Orthopositronium lifetime: Analytic results in O(a) and O(a3 log(a)),” Phys. Rev. Lett., 101, 193401 (2008);“Orthopositronium lifetime at O(a) and O(a3 log(a)) in closed form,” Phys. Rev. A, 80, 052501 (2009).

    Article  ADS  Google Scholar 

  52. T. Gehrmann, J. M. Henn, and T. Huber, “The three-loop form factor in N=4 super Yang–Mills,” JHEP, 1203, 101 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J. M. Henn, “Multiloop integrals in dimensional regularization made simple,” Phys. Rev. Lett., 110, 251601 (2013);Erratum}, 111, 039902 (2013).

    Article  ADS  Google Scholar 

  54. J. M. Henn, “Lectures on differential equations for Feynman integrals,” J. Phys. A, 48, 153001 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. C. Duhr, “Mathematical aspects of scattering amplitudes,” arXiv:1411.7538v1 [hep-ph] (2014).

    MATH  Google Scholar 

  56. A. Devoto and D. W. Duke, “Table of integrals and formulae for Feynman diagram calculations,” Riv. Nuovo Cimento, 7, 1–39 (1984).

    Article  MathSciNet  Google Scholar 

  57. E. Remiddi and J. A. M. Vermaseren, “Harmonic polylogarithms,” Internat. J. Modern Phys. A, 15, 725–754 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. A. I. Davydychev and M. Yu. Kalmykov, “Massive Feynman diagrams and inverse binomial sums,” Nucl. Phys. B, 699, 3–64 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. V. N. Gribov and L. N. Lipatov, “Deep inelastic ep scattering in perturbation theory,” Sov. J. Nucl. Phys., 15, 438–450 (1972)

    Google Scholar 

  60. L. N. Lipatov, “The parton model and perturbation theory,” Sov. J. Nucl. Phys., 20, 94–102 (1975)

    Google Scholar 

  61. G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,” Nucl. Phys. B, 126, 298–318 (1977)

    Article  ADS  Google Scholar 

  62. Yu. L. Dokshitzer, “Calculation of structure functions of deep-inelastic scattering and e+e- annihilation by perturbation theory in quantum chromodynamics,” Sov. Phys. JETP, 46, 641 (1977).

    ADS  Google Scholar 

  63. A. V. Kotikov and L. N. Lipatov, “NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories,” Nucl. Phys. B, 582, 19–43 (2000).

    Article  ADS  MATH  Google Scholar 

  64. L. N. Lipatov, “Next-to-leading corrections to the BFKL equation and the effective action for high energy processes in QCD,” Nucl. Phys. Proc. Suppl. A, 99, 175–179 (2001).

    Article  ADS  Google Scholar 

  65. A. V. Kotikov, “Deep inelastic scattering: Q2 dependence of structure functions,” Phys. Part. Nucl., 38, 1–40 (2007)

    Article  Google Scholar 

  66. A. V. Kotikov and V. N. Velizhanin, “Analytic continuation of the Mellin moments of deep inelastic structure functions,” arXiv:hep-ph/0501274v2 (2005).

    Google Scholar 

  67. A. V. Kotikov, L. N. Lipatov, A. Rej, M. Staudacher, and V. N. Velizhanin, “Dressing and wrapping,” J. Stat. Mech., 2007, P10003 (2007)

    Article  Google Scholar 

  68. Z. Bajnok, R. A. Janik, and T. Lukowski, “Four loop twist two, BFKL, wrapping, and strings,” Nucl. Phys. B, 816, 376–398 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. A. V. Kotikov, A. Rej, and S. Zieme, “Analytic three-loop solutions for image N=4 SYM twist operators,” Nucl. Phys. B, 813, 460–483 (2009)

    Article  ADS  MATH  Google Scholar 

  70. M. Beccaria, A. V. Belitsky, A. V. Kotikov, and S. Zieme, “Analytic solution of the multiloop Baxter equation,” Nucl. Phys. B, 827, 565–606 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. T. Lukowski, A. Rej, and V. N. Velizhanin, “Five-loop anomalous dimension of twist-two operators,” Nucl. Phys. B, 831, 105–132 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. C. Marboe, V. Velizhanin, and D. Volin, “Six-loop anomalous dimension of twist-two operators in planar N=4 SYM theory,” JHEP, 1507, 084 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  73. M. Staudacher, JHEP, 0505, 054 (2005)

    Article  ADS  Google Scholar 

  74. N. Beisert and M. Staudacher, “Long-range psu(2, 24) image Bethe ansätze for gauge theory and strings,” Nucl. Phys. B, 727, 1–62 (2005).

    Article  ADS  MATH  Google Scholar 

  75. M. Beccaria, “Three loop anomalous dimensions of twist-3 gauge operators in N=4 SYM,” JHEP, 0709, 023 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  76. M. Beccaria, V. Forini, T. Lukowski, and S. Zieme, “Twist-three at five loops, Bethe ansatz and wrapping,” JHEP, 0903, 129 (2009)

    Article  ADS  Google Scholar 

  77. V. N. Velizhanin, “Six-loop anomalous dimension of twist-three operators in N=4 SYM,” JHEP, 1011, 129 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction,” Phys. Lett. B, 84, 193–196 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  79. J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity,” Internat. J. Theoret. Phys., 38, 1113–1133 (1999); “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys., 2, 231–252 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B, 428, 105–114 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. A. V. Kotikov and L. N. Lipatov, “On the highest transcendentality in N=4 SUSY,” Nucl. Phys. B, 769, 217–255 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. M. K. Benna, S. Benvenuti, I. R. Klebanov, and A. Scardicchio, “A test of the AdS/CFT correspondence using high-spin operators,” Phys. Rev. Lett., 98, 131603 (2007).

    Article  ADS  Google Scholar 

  84. B. Basso, G. P. Korchemsky, and J. Kotanski, “Cusp anomalous dimension in maximally supersymmetric Yang–Mills theory at strong coupling,” Phys. Rev. Lett., 100, 091601 (2008);“Embedding nonlinear O(6) sigma model into N=4 super-Yang–Mills theory,” Nucl. Phys. B, 807, 397–423 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. N. Beisert, B. Eden, and M. Staudacher, “Transcendentality and crossing,” J. Stat. Mech., 2007, P01021 (2007); arXiv:hep-th/0610251v2 (2006).

    Google Scholar 

  86. R. C. Brower, J. Polchinski, M. J. Strassler, and C. I. Tan, “The Pomeron and gauge/string duality,” JHEP, 0712, 005 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. M. S. Costa, V. Goncalves, and J. Penedones, “Conformal Regge theory,” JHEP, 1212, 091 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  88. A. V. Kotikov and L. N. Lipatov, “Pomeron in the N=4 supersymmetric gauge model at strong couplings,” Nucl. Phys. B, 874, 889–904 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, and S. Valatka, “Quantum spectral curve at work: From small spin to strong coupling in N=4 SYM,” JHEP, 1407, 156 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kotikov.

Additional information

This research was supported by the Russian Foundation for Basic Research (Grant No. 16-02-00790_a).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 455–467, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotikov, A.V. The property of maximal transcendentality: Calculation of Feynman integrals. Theor Math Phys 190, 391–401 (2017). https://doi.org/10.1134/S0040577917030084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917030084

Keywords

Navigation