Skip to main content
Log in

Metastable states of a composite system tunneling through repulsive barriers

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a method for solving the problem of quantum tunneling through repulsive potential barriers for a composite system consisting of several identical particles coupled via pair oscillator-type potentials in the oscillator symmetrized-coordinate representation. We confirm the efficiency of the proposed approach by calculating complex energy values and analyzing metastable states of composite systems of three, four, and five identical particles on a line, which leads to the effect of quantum transparency of the repulsive barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Merkuriev and L. D. Faddeev, Quantum Scattering Theory for Several Particle Systems [in Russian], Nauka, Moscow (1985); English transl.: L. D. Faddeev and S. P. Merkuriev (Math. Phys. Appl. Math., Vol. 11), Kluwer, Dordrecht (1993).

  2. V. I. Kukulin, V. M. Krasnopolsky, and J. Horáček, Theory of Resonances: Principles and Applications (Reidel Texts Math. Sci., Vol. 3), Springer, Netherlands (1989).

  3. S. N. Ershov, B. V. Danilin, and J. S. Vaagen, Phys. Rev. C, 64, 064609 (2001).

    Article  ADS  Google Scholar 

  4. F. M. Pen’kov, JETP, 91, 698–705 (2000).

    Article  ADS  Google Scholar 

  5. P. M. Krassovitskiy and F. M. Pen’kov, J. Phys. B, 47, 225210 (2014); arXiv:1412.3905v1 [quant-ph] (2014).

    Article  ADS  Google Scholar 

  6. I. V. Puzynin, T. L. Boyadzhiev, S. I. Vinitskii, E. V. Zemlyanaya, T. P. Puzynina, and O. Chuluunbaatar, Phys. Part. Nucl., 38, 70–116 (2007).

    Article  Google Scholar 

  7. A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, V. P. Gerdt, and V. A. Rostovtsev, “Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions,” in: Computer Algebra in Scientific Computing (Lect. Notes. Comp. Sci., Vol. 6885, V. P. Gerdt, W. Koepf, E. W. Mayr, and E. V. Vorozhtsov, eds.), Springer, Berlin (2011), pp. 175–191.

    Article  Google Scholar 

  8. J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Phys. Rep., 395, 357–426 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. A. Fock, Z. Phys., 61, 126–148 (1930).

    Article  ADS  MATH  Google Scholar 

  10. A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, L. L. Hai, V. L. Derbov, A. Gózdz, and P. M. Krassovitskiy, Phys. Atom. Nucl., 77, 389–413 (2014).

    Article  ADS  Google Scholar 

  11. P. Kramer and M. Moshinsky, Nucl. Phys., 82, 241–274 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Moshinsky and Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics (Contemp. Concepts Phys., Vol. 9), Harwood, Amsterdam (1996).

  13. K. Wildermut and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, Braunschweig (1977).

    Book  Google Scholar 

  14. A. Novoselsky and J. Katriel, Ann. Phys., 196, 135–149 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P. Kramer and T. Kramer, Phys. Scr., 90, 074014 (2015); arXiv:1410.4768v2 [cond-mat.mes-hall] (2014).

    Article  ADS  Google Scholar 

  16. A. Gusev, S. Vinitsky, O. Chuluunbaatar, V. A. Rostovtsev, L. L. Hai, V. Derbov, A. Gozdz, and E. Klimov, “Symbolic-numerical algorithm for generating cluster eigenfunctions: Identical particles with pair oscillator interactions,”, Berlin, 155–168 (2013).

    Google Scholar 

  17. A. A. Gusev, Vestn. RUDN. Ser. Matematika. Informatika. Fizika, No. 1, 52–70 (2014).

    MathSciNet  Google Scholar 

  18. A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, and A. G. Abrashkevich, Comput. Phys. Commun., 185, 3341–3343 (2014).

    Article  ADS  Google Scholar 

  19. O. Chuluunbaatar, A. A. Gusev, V. L. Derbov, P. M. Krassovitskiy, and S. I. Vinitsky, Phys. Atom. Nucl., 72, 768–778 (2009).

    Article  ADS  Google Scholar 

  20. A. J. F. Siegert, Phys. Rev., 56, 750–752 (1939).

    Article  ADS  Google Scholar 

  21. C. W. McCurdy and C. K. Stroud, Comput. Phys. Commun., 63, 323–330 (1991).

    Article  ADS  MATH  Google Scholar 

  22. A. Dobrowolski, A. Gózdz, K. Mazurek, and J. Dudek, Internat. J. Mod. Phys. E, 20, 500–506 (2011).

    Article  ADS  Google Scholar 

  23. V. G. Neudachin and Yu. F. Smirnov, Nuclear Clusters in Light Nuclei [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  24. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972).

  25. G. A. Baker Jr., Phys. Rev., 103, 1119–1120 (1956).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar, A. Gózdz, and V. L. Derbov, Phys. Scr., 89, 054011 (2014).

    Article  ADS  Google Scholar 

  27. O. Chuluunbaatar, A. A. Gusev, A. G. Abrashkevich, A. Amaya-Tapia, M. S. Kaschiev, S. Y. Larsen, and S. I. Vinitsky, Comput. Phys. Commun., 177, 649–675 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yu. N. Demkov, Variational Principles in Collision Theory [in Russian], GIFML, Moscow (1958); English transl., NASA, Washington (1965).

    Google Scholar 

  29. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973); English transl. (Appl. Math. Sci., Vol. 49), Springer, New York (1985).

  30. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J. (1973).

    MATH  Google Scholar 

  31. T. Zhanlav, R. Mijiddorj, and O. Chuluunbaatar, Vestn. gos. un-ta. Ser. Prikladnaya matematika, 2, No. 9, 27–37 (2008).

    Google Scholar 

  32. T. Zhanlav, O. Chuluunbaatar, and V. Ulziibayar, Appl. Math. Comput., 236, 239–246 (2014).

    Article  MathSciNet  Google Scholar 

  33. J. H. Wilkinson and C. Reins, eds., Handbook for Automatic Computation: Linear Algebra (Grundlehren Math. Wiss., Vol. 186), Springer, New York (1971).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gusev.

Additional information

This research was supported in part by the Russian Foundation for Basic Research (Grant Nos. 14-01-00420 and 13-01-00668), the Bogoliubov–Infeld program, and the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. 0333/GF4).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 186, No. 1, pp. 27–50, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O. et al. Metastable states of a composite system tunneling through repulsive barriers. Theor Math Phys 186, 21–40 (2016). https://doi.org/10.1134/S0040577916010037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916010037

Keywords

Navigation