Skip to main content
Log in

Heating of the Upper Atmosphere of the Planet by Solar UV Radiation, Chemical and Photochemical Reactions

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

An approach that correctly takes into account the contribution of aeronomic reactions due to the direct absorption of hard solar radiation to the energy balance of relatively dense regions of planetary atmospheres is presented. For this, we used a system of generalized Boltzmann kinetic equations for multicomponent mixtures of atomic and molecular gases of moderate density, taking into account radiation and chemical reactions in the collision integrals. This approach made it possible to refine the estimates of the heating function in the energy balance equation of the lower thermosphere and mesosphere in the upper atmosphere of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that this condition is only satisfied in the lower atmosphere.

  2. Taking into account collisions of three or more particles does not change the main conclusions of this paper (Sampson, 1969).

REFERENCES

  1. Akasofu, S.I. and Chapman, S., Solar Terrestrial Physics, Part 1, Oxford: Oxford Univ. Press, 1972.

    Google Scholar 

  2. Bond, J.W., Watson, K., and Welch, J., Physical Theory of Gas Dynamics, Reading, Mass.: Addison-Wesley, 1965.

    Google Scholar 

  3. Chamberlain, J.W., Theory of Planetary Atmospheres. An introduction to Their Physics and Chemistry, New York: Academic Press, 1978.

    Google Scholar 

  4. Chetverushkin, B.N. and Shilnikov, E.V., Software package for 3D viscous gas flow simulation on multiprocessor computer systems, Comput. Math. Math. Phys., 2008, vol. 48, no. 2, pp. 295–305.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chetverushkin, B.N., Mingalev, I.V., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S., and Mingalev, O.V., Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth, Math. Models Comput. Simul., 2018, vol. 10, no. 2, pp. 176–185.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferziger, J.H. and Kaper, H.G., Mathematical Theory of Transport Processes in Gases, New York: Elsevier, 1972.

    Google Scholar 

  7. Golitsyn, G.S., Vvedenie v dinamiku planetnykh atmosfer (Introduction to the Dynamics of Planetary Atmospheres), Leningrad: Gidrometeoizdat, 1973.

  8. Goody, R.M., Atmospheric Radiation, Oxford: Oxford Univ. Press, 1964.

    Google Scholar 

  9. Haigh, J.D., Modelling the impact of solar variability on climate, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, pp. 63–72.

    Article  ADS  Google Scholar 

  10. Kolesnichenko, A.V., Kontinual’nye modeli prirodnykh i kosmicheskikh sred. Problemy termodinamicheskogo konstruirovaniya (Continuous Models of Natural and Space Environments. Problems of Thermodynamic Design), Synergetics: From Past to Future, no. 79, Moscow: LENAND, 2017.

  11. Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ mnogokomponentnykh sred (Turbulence of Multicomponent Media), Moscow: Nauka, 1999.

  12. Koshelev, V.V., Klimov, N.N., and Sutyrin, N.A. Aeronomiya mezosfery i nizhnei termosfery (Aeronomy of the Mesosphere and Lower Thermosphere), Moscow: Nauka, 1983.

  13. Larkin, A., Haigh, J.D., and Djavidnia, S., The effect of solar UV irradiance variations on the Earth’s atmosphere, Space Sci. Rev., 2000, vol. 94, pp. 199–214.

    Article  ADS  Google Scholar 

  14. Marov, M.Ya. and Kolesnichenko, A.V., Vvedenie v planetnuyu aeronomiyu (Introduction to Planetary Aeronomy), Moscow: Nauka, 1987.

  15. Marov, M.Ya. and Kolesnichenko, A.V., Mechanics of Turbulence of Multicomponent Gases, Dordrecht, Boston, London: Kluwer Academic Publishers, 2001.

    Book  MATH  Google Scholar 

  16. Marov, M.Ya. and Kolesnichenko, A.V., Turbulence and Self-Organization. Modeling Astrophysical Objects, New York, Heidelberg, Dordrecht, London: Springer, 2015.

    Google Scholar 

  17. McElroy, M.B., Chemical processes in the solar system: A kinetic perspective, Chem. Kinet., Ser. 2, 1976, vol. 9, pp. 127–211.

    Google Scholar 

  18. McEwan, M.J. and Phillips, L.F., Chemistry of the Atmosphere, New York: Wiley, 1975.

    Google Scholar 

  19. Mingalev, I.V. and Mingalev, V.S., The global circulation model of the lower and middle atmosphere of the Earth with a given temperature distribution, Mat. Model., 2005, vol. 17, no. 5, pp. 24–40.

    MATH  Google Scholar 

  20. Mingalev, V.S., Mingalev, I.V., Mingalev, O.V., Oparin, A.M., and Orlov, K.G., Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid, Comput. Math. Math. Phys., 2010, vol. 50, no. 5, pp. 877–889.

    Article  MathSciNet  MATH  Google Scholar 

  21. Polak, L.S., Neravnovesnaya khimicheskaya kinetika i ee primenenie (Nonequilibrium Chemical Kinetics and Its Applications), Moscow: Nauka, 1979.

  22. Sampson, D.H., Radiative Contributions to Energy and Momentum Transport in a Gas, New York: Interscience, 1965.

    Google Scholar 

  23. Thuillier, G., Absolute UV radiation, its variability and consequences for the Earth’s climate, in The Solar Cycle and Terrestrial Climate, (1st Solar and Space Weather Euroconference), Tenerife, 2000, vol. 463, pp. 69–78.

  24. Vázquez, M. and Hanslmeier, A., Ultraviolet Radiation in the Solar System, Heidelberg, Dordrecht, London: Springer, 2006.

    Book  Google Scholar 

  25. Whitten, R.C. and Poppoff, I.G., Fundamentals of Aeronomy, New York: Wiley, 1971.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 13.1902.21.0039) “Theoretical and experimental studies of the formation and evolution of extrasolar planetary systems and the characteristics of exoplanets.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnichenko.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V. Heating of the Upper Atmosphere of the Planet by Solar UV Radiation, Chemical and Photochemical Reactions. Sol Syst Res 54, 524–540 (2020). https://doi.org/10.1134/S0038094620050032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620050032

Keywords:

Navigation