Skip to main content
Log in

Power distributions for self-gravitating astrophysical systems based on nonextensive Tsallis kinetics

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The long-time development of self-gravitating gaseous astrophysical systems (in particular, the evolution of the protoplanet accretion disk) is mainly determined by relatively fast processes of the collision relaxation of particles. However, slower dynamical processes related to force (Newton or Coulomb) interactions between particles should be included (as q-collisions) in the nonextensive kinetic theory as well. In the present paper, we propose a procedure to include the Newton self-gravity potential and the centrifugal potential in the near-equilibrium power-like q-distribution in the phase space, obtained (in the framework of nonextensive statistics) by means of the modified Boltzmann equation averaged with respect to an unnormalized distribution. We show that if the power distribution satisfies the stationary q-kinetic equation, then the said equation imposes clear restrictions on the character of the long-term force field and on the possible dependence of hydrodynamic parameters of the coordinates: it determines those parameters uniquely. We provide a thermodynamic stability criterion for the equilibrium of the nonextensive system. The results allow us to simulate the evolution of gaseous astrophysical systems (in particular, the gravitational stability of rotating protoplanet accretion disks) more adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S., A note on the q-deformation-theoretical aspect of the generalized entropies in nonextensive physics, Phys. Lett. A, 1997, vol. 224, pp. 326–330.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Abe, S., Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Rényientropy- based theory, Phys. A (Amsterdam, Neth.), 2001, vol. 300, nos. 3–4, pp. 417–423.

    Article  ADS  MATH  Google Scholar 

  • Abe, S., Martínez, S., Pennini, F., and Plastino, A., Nonextensive thermodynamic relations, Phys. Lett. A, 2001, vol. 281, nos. 2–3, pp. 126–130.

    Article  ADS  MATH  Google Scholar 

  • Antonov, V.A., in International Astronomical Union Symp. “Dynamics of Globular Clusters,” Goodman J. and Hut, P. Eds., Dordrecht: Reidel, 1985, no. 113, pp. 525–540.

    ADS  Google Scholar 

  • Boghosian, B.M., Navier–Stoke equations for generalized thermostatistics, Braz. J. Phys., 1999, vol. 29, no. 1, pp. 91–107.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S., An Introduction to the Theory of Stellar Structure, New York: Dover, 1967.

    Google Scholar 

  • Chavanis, P.-H., Gravitational instability of slowly rotating isothermal spheres, Astron. Astrophys., 2002, vol. 396, pp. 315–329.

    Article  ADS  MATH  Google Scholar 

  • Chavanis, P.-H., Gravitational instability of isothermal and polytropic spheres, Astron. Astrophys., 2003, vol. 401, pp. 15–42.

    Article  ADS  MATH  Google Scholar 

  • Chavanis, P.-H. and Sire, C., Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions, Phys. Rev., 2004, vol. 69, no. 1, art. ID 016116.

    Google Scholar 

  • Chavanis, P.-H. and Sire, C., On the interpretations of Tsallis functional in connection with Vlasov Poisson and related systems: dynamics vs thermodynamics, Phys. A (Amsterdam, Neth.), 2005, vol. 356, nos. 2–4, pp. 419–446.

    Article  ADS  MathSciNet  Google Scholar 

  • Collins, J., Renormalization, New York: Cambridge Univ. Press, 1984.

    Book  MATH  Google Scholar 

  • Curado, E.M.F., General aspects of the thermodynamical formalism, Braz. J. Phys., 1999, vol. 29, no. 1, pp. 36–45.

    Article  ADS  Google Scholar 

  • Curado, E.M.F. and Tsallis, C., Generalized statistical mechanics: connection with thermodynamics, J. Phys. A: Math. Gen., 1991, vol. 24, pp. 69–72.

    Article  ADS  MathSciNet  Google Scholar 

  • Daroczy, Z., Generalized information function, Inf. Control, 1970, vol. 16, pp. 36–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Du, J.L., Nonextensivity in nonequilibrium plasma systems with Colombian long-range interactions, Phys. Lett. A, 2004a, vol. 329, pp. 262–267.

    Article  ADS  MATH  Google Scholar 

  • Du, J.L., The nonextensive parameter and Tsallis distribution for self-gravitating systems, Europhys. Lett., 2004b, vol. 67, pp. 893–899.

    Article  Google Scholar 

  • Du, J.L., The hydrostatic equilibrium and Tsallis’ equilibrium for self-gravitating systems, Central Eur. J. Phys., 2005, vol. 3, pp. 376–381.

    ADS  Google Scholar 

  • Du, J.L., What does the nonextensive parameter stand for in self-gravitating systems? Astrophys. Space Sci., 2006, vol. 305, pp. 247–251.

    Article  MATH  Google Scholar 

  • Du, J.L., Nonextensive and the power-law distributions for the systems with self-gravitating long-range interactions, Astrophys. Space Sci., 2007, vol. 312, pp. 47–55.

    Article  MATH  Google Scholar 

  • Du, J.L., A new form of Tsallis distribution based on the probabilistically independent postulate, Chin. Phys. B, 2010, vol. 19, no. 7, art. ID 070501.

    Google Scholar 

  • Du, J.L., The nonextensive parameter for the astrophysical system in an external rotating field, 2015, arXiv:1508.02290.

    Google Scholar 

  • Elson, R., Hut, P., and Inagaki, S., Dynamical evolution of globular clusters, Ann. Rev. Astron. Astrophys., 1987, vol. 25, pp. 565–601.

    Article  ADS  Google Scholar 

  • Emden, R., Gaskugeln: Anwendungen der Mechanischen Wärmetheorie auf Kosmologische und Meteorologische Probleme, Leipzig: Teubner Verlag, 1907.

    MATH  Google Scholar 

  • Eddington, A.S., The Internal Constitution of Stars, Cambridge: Cambridge Univ. Press, 1926.

    MATH  Google Scholar 

  • Ferziger, J.H. and Kaper, H.G., Mathematical Theory of Transport Processes in Gases, Amsterdam: Elsevier, 1972.

    Google Scholar 

  • Gell-Mann, M. and Tsallis, C., Nonextensive Entropy— Interdisciplinary Applications, Oxford: Oxford Univ. Press, 2004.

    MATH  Google Scholar 

  • Goldstein, H., Classical Mechanics, Cambridge, MA: Addison-Wesley, 1950.

    MATH  Google Scholar 

  • Havrda, J. and Charvat, F., Quantification method of classification processes, Kybernetika, 1967, vol. 3, pp. 30–35.

    MathSciNet  MATH  Google Scholar 

  • Johal, R.S. and Rai, R., Nonextensive thermodynamic formalism for chaotic dynamical systems, Phys. A (Amsterdam, Neth.), 2000, vol. 282, pp. 525–535.

    Article  ADS  Google Scholar 

  • Kandrup, H.E., The complexion of forces in an anisotropic self-gravitating system, Astrophys. J., 1981, vol. 244, p. 1039.

    Article  ADS  MathSciNet  Google Scholar 

  • Khinchin, A.Ya., The “entropy” definition in the theory of probability, Usp. Mat. Nauk, 1953, vol. 8, no. 3, pp. 3–20.

    MATH  Google Scholar 

  • Klimontovich, Yu.L., Statisticheskaya teoriya otkrytykh sistem (Statistical Theory of the Open Systems), Moscow: Yanus, 1995, vol. 1.

  • Kohler, M., Behandlung von Nichtgleichgewichtsvorgangen mit hilfe rines Extremal prinzipes, Zs. Phys., 1948, vol. 124, pp. 772–789.

    Article  ADS  MATH  Google Scholar 

  • Kolesnichenko, A.V., On construction of the entropy transport model based on the formalism of nonextensive statistics, Math. Models Comp. Simul., 2014a, vol. 6, no. 6, pp. 587–597.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolesnichenko, A.V., Modification of the criteria of gravitational instability criterions of astrophysical disks with a fractal structure within the Tsallis nonextensive statistics, Preprint of Keldysh Institute of Applied Mathematics, Moscow, 2014b, no. 55.

  • Kolesnichenko, A.V., Modification in framework of Tsallis statistics of gravitational instability criterions of astrophysical disks with fractal structure of phase space, Math. Montisnigri, 2015a, vol. 32, pp. 93–118.

    MathSciNet  Google Scholar 

  • Kolesnichenko, A.V., Information-thermodynamic concept of self-organizing processes in open systems affected by the external environment, Preprint of Keldysh Institute of Applied Mathematics, Moscow, 2015b, no. 19.

  • Kolesnichenko, A.V. and Chetverushkin, B.N., Kinetic derivation of a quasi-hydrodinamic system of equations on the base of nonextensive statistics, Russ. J. Num. Anal. Math. Model., 2013, vol. 28, no. 6, pp. 547–576.

    MATH  Google Scholar 

  • Kolesnichenko, A.V. and Marov, M.Ya., Modification of the Jeans instability criterion for fractal-structure astrophysical objects in the framework of nonextensive statistics, Sol. Syst. Res., 2014, vol. 48, no. 5, pp. 354–365.

    Article  ADS  Google Scholar 

  • Kolesnichenko, A.V. and Marov, M.Ya., Modification of the Jeans and Toomre instability criteria for astrophysical fractal objects within nonextensive statistics, Sol. Syst. Res., 2016, vol. 50, no. 4, pp. 251–261.

    Article  ADS  Google Scholar 

  • Lima, J.A.S., Bezerra, J.R., and Silva, R., Reply to comment on conservative force fields in nonextensive kinetic theory, Phys. A (Amsterdam, Neth.), 2002a, vol. 316, p. 289.

    Article  ADS  MATH  Google Scholar 

  • Lima, J.A.S., Bezerra, J.R., and Silva, R., Conservative force fields in nonextensive kinetic theory, Phys. A (Amsterdam, Neth.), 2003, vol. 316, pp. 289–296.

    Article  ADS  MATH  Google Scholar 

  • Lima, J.A., Silva, R., and Plastino, A.R., On Tsallis’ nonextensive thermostatistics and H-theorem, Phys. Rev. Lett., 2001, vol. 86, pp. 2938–2941.

    Article  ADS  Google Scholar 

  • Lima, J.A.S., Silva, R., and Santos, J., Jeans’ gravitational instability and nonextensive kinetic theory, Astron. Astrophys., 2002b, vol. 396, pp. 309–313.

    Article  ADS  MATH  Google Scholar 

  • Lynden-Bell, D. and Wood, R., The gravo-thermal catastrophe in isothermal spheres and the onset of redgiant structure for stellar systems, Mon. Not. R. Astron. Soc., 1968, vol. 138, pp. 495–525.

    Article  ADS  Google Scholar 

  • Mandelbrot, B.B., Fractals: Form, Change, and Dimension, San Francisco: Freeman, 1977.

    MATH  Google Scholar 

  • Martinez, S., Nicolas, F., Pennini, F., and Plastino, A., Tsallis’entropy maximization procedure revisited, Phys. A (Amsterdam, Neth.), 2000, vol. 286, pp. 489–502.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nonextensive Statistical Mechanics and Its Applications, Ser. Lect. Not. Phys., Abe, S. and Okamoto, Y., Ed., Berlin: Springer-Verlag, 2001.

  • Olemskoi, A.I., Sinergetika slozhnykh sistem. Fenomenologiya i statistcheskaya teoriya (Synergetics of the Complicated Systems: Phenomenology and Statistical Theory), Moscow: Krasand, 2009.

    Google Scholar 

  • Padmanabhan, T., Antonov instability and gravothermal catastrophe—revisited, Astrophys. J. Suppl., 1989, vol. 71, pp. 651–664.

    Article  ADS  Google Scholar 

  • Padmanabhan, T., Statistical mechanics of gravitating systems, Phys. Rep., 1990, vol. 188, pp. 285–362.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Plastino, A.R. and Plastino, A., Stellar polytropes and Tsallis’ entropy, Phys. Lett. A, 1993, vol. 174, nos. 5–6, pp. 384–386.

    Article  ADS  MathSciNet  Google Scholar 

  • Plastino, A.R., Plastino, A., and Tsallis, C., The classical N-body problem within a generalized statistical mechanics, J. Phys. A: Math. Gen., 1994, vol. 27, pp. 5707–5714.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Plastino, A.R., Plastino, A., and Tsallis, C., Entropy and the Vlasov–Poisson equations, Braz. J. Phys., 1999, vol. 29, no. 1, pp. 79–89.

    ADS  MATH  Google Scholar 

  • Sakagami, M. and Taruya, A., Self-gravitating stellar systems and non-extensive hermostatistics, Continuum Mech. Thermodyn., 2004, vol. 16, no. 3, pp. 279–292.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sotolongo-Costa, O., Gaggero-Sager, L.M., and Mora-Ramos, M.E., A nonextensive statistical model of multiple particle breakage, Phys. A (Amsterdam, Neth.), 2015, vol. 438, pp. 74–80.

    Article  ADS  Google Scholar 

  • Tarasov, V.E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka (Model of Theoretical Physics with Integral-Differentiation of Fractional Order), Izhevsk: Izhevsk. Inst. Komp. Issled., 2011.

    Google Scholar 

  • Taruya, A. and Sakagami, M., Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems, Phys. A (Amsterdam, Neth.), 2002, vol. 307, nos. 1–2, pp. 185–206.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taruya, A. and Sakagami, M., Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems II. Thermodynamic properties of stellar polytrope, Phys. A (Amsterdam, Neth.), 2003a, vol. 318, nos. 3–4, pp. 387–413.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taruya, A. and Sakagami, M., Gravothermal catastrophe and Tsallis’ generalized entropy of self-gravitating systems III. Quasi-equilibrium structure using normalized q-values, Phys. A (Amsterdam, Neth.), 2003b, vol. 322, pp. 285–312.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taruya, A. and Sakagami, M., Antonov problem and quasiequilibrium states in N-body system, Mon. Not. R. Astron. Soc., 2005, vol. 364, pp. 990–1010.

    Article  ADS  Google Scholar 

  • Tsallis, C., Nonextensive statistical mechanics and thermodynamics: historical background and present status, in Nonextensive Statistical Mechanics and Its Applications, Ser. Lect. Not. Phys., Abe, S., and Okamoto Y. Eds. Berlin: Springer-Verlag, 2001, pp. 3–99.

    Chapter  Google Scholar 

  • Tsallis, C., Possible generalization of Boltzmann-Gibbs-Statistics, J. Stat. Phys., 1988, vol. 52, nos. 1–2, pp. 479–487. http:/tsallis. cat.cbpf.br/biblio.htm.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tsallis, C., Nonextensive statistic: theoretical, experimental, and computational evidences and connections, Braz. J. Phys., 1999, vol. 29, no. 1, pp. 1–35.

    Article  ADS  Google Scholar 

  • Tsallis, C., Mendes, R.S., and Plastino, A.R., The role of constraints within generalized nonextensive statistics, Phys. A (Amsterdam, Neth.), 1998, vol. 261, pp. 534–554.

    Article  ADS  Google Scholar 

  • Tsallis, C., Introduction to Nonextensive Statistical Mechanics–Approaching a Complex Word, New York: Springer-Verlag, 2009.

    MATH  Google Scholar 

  • Wang, Q.A., Nivanen, L., and Méhauté, A.L., Fractal geometry, information growth and nonextensive thermodynamics, Phys. A (Amsterdam, Neth.), 2004, vol. 340, no. 1, pp. 117–125.

    Article  ADS  MathSciNet  Google Scholar 

  • Zaripov, R.G., Samoorganizatsiya i neobratimost’ v neekstensivnykh sistemakh (Self-Organization and Irreversibility in Nonextensive Systems), Kazan: Fen, 2002.

    Google Scholar 

  • Zaripov, R.G., On thermodynamic equilibrium of nonextensive systems, Techn. Phys., 2006, vol. 51, no. 11, pp. 1393–1397.

    Article  ADS  Google Scholar 

  • Zubarev, D.P., Neravnovesnaya statisticheskaya mekhanika (Nonequilibrium Statistical Mechanics), Moscow: Nauka, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnichenko.

Additional information

Original Russian Text © A.V. Kolesnichenko, 2017, published in Astronomicheskii Vestnik, 2017, Vol. 51, No. 2, pp. 142–160.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V. Power distributions for self-gravitating astrophysical systems based on nonextensive Tsallis kinetics. Sol Syst Res 51, 127–144 (2017). https://doi.org/10.1134/S0038094617020046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094617020046

Keywords

Navigation