Skip to main content
Log in

Modeling of sputtering of the ice surfaces under impact of H+ ions: Redistribution of the h and o isotopes applied to the satellites of Jupiter

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Using computer modeling, the current models for sputtering coefficient calculation of the ice surfaces under the impact of H+ ions are statistically analyzed and the sputtering coefficients and their confidence intervals are calculated over a wide range of ion energies. It was established that the approximation model (Fama et al., 2008) with a calculated confidence interval of ±20% is less sensitive to the variable parameters. The sputtering coefficients of water ice p = 0.94, T = 80 K) are calculated under the impact of H+ ions for energies from several eV to 10 keV and the results are verified with experimental data. The maximum sputtering coefficient is 0.9 H2O/ion at the energy of the incident H+ ions of 200 eV. The modeling of the sputtering coefficients dependence of H2O molecules from the ice surface temperature showed that they weakly vary in the temperature range of 40–100 K and increase with an increase in the surface temperature. At maximum of distribution under T = 40–100 K, the sputtering coefficient Y(E = 200 eV) is 0.9 H2O/ion at T = 200 K — 1.1 H2O/ion. The distribution by kinetic energy of the dispersed H2O molecules and H and O atoms are modeled for the energy of 1–100 keV of the incident H+ ions. These results may be applied for modeling of variable isotopic compositions of the exosphere of the Jupiter’s satellites in the course of sputtering. The calculated ratios of the sputtering coefficients of H, D, 18O, and 16O from the surface for the Jupiter’s satellites (Europe, Ganymede, Callisto) under the impact of H+ ions for energy from several eV to 10 keV are (1.7 ± 0.3) × 10−5 and 0.18 ± 0.03, respectively. These ratios are distinct from the initial isotope ratios on the surface of the Jupiter’s satellites. This significant difference may lead to the redistribution of isotopes on the surface of the Jupiter’s satellites. The variation in the D/H ratio on the surface of the Jupiter’s satellites depends on the flux density of the radiated ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagenal, F., Dowling, T., and McKinnon, W., Jupiter: the Planet, Satellites and Magnetosphere, Cambridge: Cambridge Univ. Press, 2004, p. 748.

    Google Scholar 

  • Baragiola, R.A., Vidal, R.A., Svendsen, W., Schou, J., Shi, M., Bahr, D.A., and Atteberrry, C.L., Sputtering of water ice, Nucl. Instrum. Methods Phys. Res., 2003, vol. 209, pp. 294–303.

    Article  ADS  Google Scholar 

  • Barghouty, A.F., Meyer, F.W., Harris, P.R., and Adams, J.H., Jr., Solar-wind protons and heavy ions sputtering of lunar surface materials, Nucl. Instrum. Methods Phys. Res., 2011, vol. 269, pp. 1310–1315.

    Article  ADS  Google Scholar 

  • Berger, M.J. and Seltzer, S.M., Tables of energy losses and ranges of electrons and positrons, NASA Publication SP-3012, 1964.

    Google Scholar 

  • Berish, R., Scattering of Solid by Ion Bombardment, Berlin-New York-Tokyo: Springer Verlag, 1985.

    Google Scholar 

  • Biersack, J.P., Kaczerowski, W., Ney, J., Rahim, B.K.H., Riccato, A., Thacker, G.R., and Uecker, H., Simulation of 14 MeV neutrons by protons of higher energies, J. Nucl. Mater., 1978, vol. 76/77, p. 640.

    Article  ADS  Google Scholar 

  • Bringa, E.M., Johnson, R.E., and Jakas, M., Moleculardynamics simulation of electronic sputtering, Phys. Rev., 1995, vol. 60, pp. 15107–15116.

    Article  Google Scholar 

  • Brown, W.L., Augustyniak, W.M., Simmons, E., Marcantonio, K.J., Lanzerotti, L.J., Johnson, R.E., Boring, J.W., Reimann, C.T., Foti, G., and Pirronello, V., Erosion and molecular formation in condensed gas films by electronic energy loss of fast ions, Nucl. Instrum. Methods Phys. Res., 1982, vol. 198, pp. 1–8.

    Article  ADS  Google Scholar 

  • Cassidy, T.A. and Johnson, R.E., Monte Carlo model of sputtering and other ejection processes within a regolith, Icarus, 2005, vol. 176, pp. 499–507.

    Article  ADS  Google Scholar 

  • Cassidy, T., Coll, P., Raulin, F., Carlson, R.W., Johnson, R.E., Loeffler, M.J., Hand, K.H., and Baragiola, R.A., Radiolysis and photolysis of icy satellite surfaces: experiments and theory, Space Sci. Rev., 2010, vol. 115, pp. 299–315. DOI: 10.1007/s11214-009-9625-3.

    Article  ADS  Google Scholar 

  • Cooper, J.F., Johnson, R.E., Mauk, B.H., Garrett, H.B., and Gehrels, N., Energetic ion and electron irradiation of the icy Galilean satellites, Icarus, 2001, vol. 149, pp. 133–159.

    Article  ADS  Google Scholar 

  • Diaconis, P. and Efron, B., Computer intensive methods in statistics, Sci. Amer., 1983, vol. 248, pp. 96–108.

    Article  Google Scholar 

  • Dukes, C.A., Chang, W.-Y., Fama, M., and Baragiola, R.A., Laboratory studies on the sputtering contribution to the sodium atmospheres of Mercury and the Moon, Icarus, 2011, vol. 212, pp. 463–469.

    Article  ADS  Google Scholar 

  • Eckstein, W., Sputtering by particle bombardment, Top. Appl. Phys., 2007, vol. 110, pp. 33–187.

    Article  Google Scholar 

  • Fama, M., Shi, J., and Baragiola, R.A., Sputtering of ice by low-energy ions, Surf. Sci., 2008, vol. 602, pp. 156–161.

    Article  ADS  Google Scholar 

  • Johnson, R.E. and Sittler, E.C., Sputter-produced plasma as a measure of satellite surface composition: the Cassini mission, Geophys. Rev. Lett., 1980, vol. 17, pp. 1629–1632.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Electronic sputtering: angular and chargestate dependence of the yield via superposition, J. Phys. Colloq, 1989, vol. 50, pp. 251–257.

    Article  Google Scholar 

  • Johnson, R.E., Energetic Charged Particle Interaction with Atmospheres and Surfaces, New York: Springer-Verlag, 1990, p. 344.

    Book  Google Scholar 

  • Johnson, R.E., Sputtering and desorption from icy surfaces, Solar Syst. Ices, Dordrecht: WKAP. Astrophys. and Space Sci. Library, 1998, pp. 303–331.

    Chapter  Google Scholar 

  • Johnson, R.E., Quickenden, T.I., Cooper, P.D., et al., The production of oxidants in Europa’s surface, Astrobiology, 2003, vol. 3, pp. 823–850.

    Article  ADS  Google Scholar 

  • Johnson, R.E., The magnetospheric plasma-driven evolution of satellite atmospheres, Astrophys. J., 2004a, vol. 609, pp. 99–102.

    Article  ADS  Google Scholar 

  • Johnson, R.E., Carlson, R.W., Cooper, J.F., Paranicas, C., Moore, M.H., and Wong, M.C., Radiation effects on the surface of the Galilean satellites, in Jupiter-the Planet, Satellites and Magnetosphere, Bagenal, F., Dowling, T., and McKinnon, W.B., Eds., Cambridge: Cambridge Univ. Press, 2004b, chapter 20, pp. 485–512.

    Google Scholar 

  • Johnson, R.E., Fama, M., Liu, M., Baragiola, R.A., Sittler, E.C., Jr., and Smith, H.T., Sputtering of ice grains and icy satellites in Saturn’s inner magnetosphere, Planet Space Sci., 2008, vol. 56, pp. 1238–1243.

    Article  ADS  Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie (Jupiter’s and Saturn’s Systems: Formation, Composition and Internal Structure), Moscow: LKI, 2009.

    Google Scholar 

  • Lanzerotti, L.J., Brown, W.L., Poate, J.M., and Augustyniak, W.M., On the contribution of water products from Galilean satellites to the Jovian magnetosphere, Geophys. Rev. Lett., 1978, vol. 5, pp. 155–158.

    Article  ADS  Google Scholar 

  • Lepoire, D.J., Cooper, B.H., Melcher, C.L., and Tombrello, T.A., Sputtering of SO2 by high energy ions, Radiat. Eff. Defects Solids, 1983, vol. 71, pp. 245–255.

    Article  Google Scholar 

  • Martynenko, Yu.V., Plasma interaction with a surface, in Itogi nauki i tekhniki. Ser. Fizika plazmy (Results of Science and Technology. Ser. Plasma Physics), Moscow: VINITI, 1982, vol. 3, pp. 119–173.

    Google Scholar 

  • Pedrys, R., Warczak, B., Schou, J., Stenum, B., and Ellegaard, O., Ejection of molecules from solid deuterium excited by keV electrons, Phys. Rev. Lett., 1987, vol. 79, pp. 3070–3073.

    Article  ADS  Google Scholar 

  • Plainaki, C., Milillo, A., Mura, A., Massetti, S., Orsini, S., and Cassidy, T., Ion sputtering and radiolysis of ice at the Galilean moons, Proc. 10th Hellenic Astron. Conf., Ioannina, Sept. 5–8, 2011, pp. 1–16.

    Google Scholar 

  • Reimann, C.T., Johnson, R.E., and Brown, W.L., Sputtering and luminescence in electronically excited solid argon, Phys. Rev. Lett., 1984, vol. 53, pp. 600–603.

    Article  ADS  Google Scholar 

  • Schou, J., Stenum, B., Ellegaard, O., Dutkiewicz, L., and Pedrys, R., Sputtering of the most volatile solids: the solid hydrogen, Nucl. Instrum. Methods Phys. Res., 1995, vol. 100, pp. 217–223.

    Article  ADS  Google Scholar 

  • Schou, J., Stenum, B., and Pedrys, R., Sputtering of solid deuterium by He-ions, Nucl. Instrum. Methods, 2001a, vol. 182, pp. 116–120.

    Article  Google Scholar 

  • Schou, J. and Pedrys, R., Sputtering of carbon monoxide ice by hydrogen ions, J. Geophys. Res., 2001b, vol. 106, pp. 33309–33314.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Johnson, R.E., Cooper, J.F., and Wong, M.C., Surface-bounded atmosphere of Europa, Icarus, 2005, vol. 173, pp. 480–498.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Stochastic models of hot planetary and satellite coronas: atomic oxygen in Europa’s corona), Solar Syst. Res., 2006, vol. 40, no. 3, pp. 175–191.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Ionization chemistry in H2O-dominated atmospheres of icy moons, Solar Syst. Res., 2008, vol. 42, no. 6, pp. 473–487.

    Article  ADS  Google Scholar 

  • Sieveka, E. and Johnson, R.E., Thermaland plasmainduced molecular redistribution on the icy satellites, Icarus, 1982, vol. 51, pp. 528–548.

    Article  ADS  Google Scholar 

  • Sigmund, P., Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets, Phys. Rev., 1969, vol. 84, pp. 383–416.

    Article  ADS  Google Scholar 

  • Taglauer, E., Beiat, U., Marin, G., and Heiland, W., Inelastic particle-surface collisions, Nucl. Mater, 1976, vol. 63, p. 193.

    Article  ADS  Google Scholar 

  • Westley, M.S., Baragiola, R.A., Johnson, R.E., and Baratta, G.A., Photodesorption from low-temperature water ice in interstellar and circumsolar grains, Nature, 1995, vol. 373, p. 405.

    Article  ADS  Google Scholar 

  • Yamamura, Y., Matsunami, J., and Itoh, N., Radiation effects and defects in solids, Radiat. Eff., 1983, vol. 71, p. 65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bronsky.

Additional information

Original Russian Text © V.S. Bronsky, S.N. Shilobreeva, V.I. Shematovich, A.V. Khokhlov, 2015, published in Astronomicheskii Vestnik, 2015, Vol. 49, No. 4, pp. 273–282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronsky, V.S., Shilobreeva, S.N., Shematovich, V.I. et al. Modeling of sputtering of the ice surfaces under impact of H+ ions: Redistribution of the h and o isotopes applied to the satellites of Jupiter. Sol Syst Res 49, 237–246 (2015). https://doi.org/10.1134/S0038094615030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094615030028

Keywords

Navigation