Skip to main content
Log in

Cartographic and geodetic methods to characterize the potential landing sites for the future Russian missions Luna-Glob and Luna-Resurs

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Characterization of the potential landing sites for the planned Luna-Glob and Luna-Resurs Russian missions requires cartographic and geodetic support prepared with special methods and techniques that are briefly overviewed here. The data used in the analysis, including the digital terrain models (DTMs) and the orthoimages acquired in the survey carried out from the Lunar Reconnaissance Orbiter and Kaguya spacecraft, are described and evaluated. By way of illustration, different regions of the lunar surface, including the subpolar regions of the Moon, are characterized with the suggested methods and the GIS-technologies. The development of the information support for the future lunar missions started in 2011, and it is now carried on in MIIGAiK Extraterrestrial Laboratory (MExLab), which is a department of the Moscow State University of Geodesy and Cartography (MIIGAiK).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdrakhimov, A.M., Ivanov, M.A., Basilevsky, A.T., Dickson, J.L., Head, J.W., Zuber, M.T., Smith, D.E., Mazarico, E., Neish, C.D., and Bussey, D.B.J., The Luna-Glob candidate landing region: geological mapping based on the lunar reconnaissance orbiter data, Proc. 43rd Lunar and Planetary Science Conference LPSC2012, Woodlands, March 19–23, 2012.

  • Basilevsky, A.T., Kreslavsky, M.A., Karachevtseva, I.P., and Gusakova, E.N., Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas, Planet. Space Sci., 2014, vol. 92, pp. 77–87.

    Article  ADS  Google Scholar 

  • Ding, W., Stepinski, T.F., Mu, Y., Bandeira, L., Ricardo, R., Wu, Y., Lu, Z., Cao, T., and Wu, X., Subkilometer crater discovery with boosting and transfer learning, ACM Trans. Intell. Syst. Technol., 2011, vol. 2, no. 4, p. 39:1–39:22.

    Article  Google Scholar 

  • Florenskii, K.P., Sovremennye predstavleniya o Lune (Modern Conception for the Moon), Moscow: Nauka, 1972.

    Google Scholar 

  • Grechishchev, A., Zubarev, A., Nadezhdina, I., Patratii, V., and Shishkina, L., PHOTOMOD is a software complex for processing images of celestial bodies, 12-ya Mezhdunarodnaya nauchno-tekhnicheskaya konf. “Ot snimka k karte: tsifrovye fotogrammetricheskie tekhnologii”. Tez. dokl. (Proc. 12th Sci.-Tech. Conf. “From Photo to Map: Digital Photogrammetric Techniques), Rakurs, 2012, pp. 12–13.

    Google Scholar 

  • Grohmann, C.H., Smith, M.J., and Riccomini, C., Multiscale analyses of topographic surface roughness in the Midland Valley, Scotland, IEEE Trans. Geosci. Remote Sensing, 2011, vol. 49, pp. 1200–1213.

    Article  ADS  Google Scholar 

  • Haruyama, J., Matsunaga, T., Ohtake, M., Morota, T., Honda, C., Yokota, Y., Torii, M., Ogawa, Y., and LISM Working Group, Global lunarsurface mapping experiment using the Lunar Imager/Spectrometer on SELENE, Earth Planets Space, 2014, vol. 60, pp. 243–256.

    Article  ADS  Google Scholar 

  • Karachevtseva, I.P., Konopikhin, A.A., Shingareva, K.B., Cherepanova, E.V., Gusakova, E.N., and Baskakova, M.A., Atlas for Lunokhod-1: geoinformation mapping and analysis of automated interplanetary station Luna-17 landing area according to Lunar Reconnaissance Orbiter distant probing, Sovr. Probl. Distants. Zondir. Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 292–303.

    Google Scholar 

  • Karachevtseva, I., Oberst, J., Konopikhin, A., Scholten, F., Shingareva, K., Cherepanova, E., Gusakova, E., Haase, I., Peters, O., Plescia, J., and Robinson, M., Cartography of the Lunokhod-1 landing site and traverse from LRO image and stereo topographic data, Planet. Space Sci., 2013, vol. 85, pp. 175–187. http://dx.doi.org/10.1016/j.pss.2013.06.002.

    Article  ADS  Google Scholar 

  • Kim, J.R., Muller, J.P., van Gasselt, S., Morley, J.G., Neukum, G., and the HRSC Team, Automated crater detection, a new tool for mars cartography and chronology, Photogramm. Eng. Remote Sensing, 2005, vol. 71, no. 10, pp. 1205–1217.

    Article  Google Scholar 

  • Kneissl, T., van Gasselt, S., and Neukum, G., Map-projection-independent crater size-frequency determination in GIS environments — new software tool for ArcGIS, Planet. Space Sci., 2011, no. 59, pp. 1243–1254.

    Google Scholar 

  • Kokhanov, A., Karachevtseva, I., Zubarev, A., Nadezhdina, I., Patratiy, V., Kozlova, N., Matveev, E., Garov, A., and Oberst, J., Methods and instruments for the complex spatial analysis of the potential landing sites on the lunar subpolar area, Proc. 5th Moscow Solar System Symp. (5M-S3), Moscow, 2014, abst. 5MS3-MN-18.

    Google Scholar 

  • Kreslavsky, M.A. and Head, J.W., Kilometer-scale roughness on mars: results from MOLA data analysis, J. Geophys. Res., 2000, vol. 105, no. E11, pp. 26695–26711.

    Article  ADS  Google Scholar 

  • Mitrofanov, I., Litvak, M., Sanin, A., Malakhov, A., Golovin, D., Boynton, W., Droege, G., Chin, G., Evans, L., Harshman, K., Fedosov, F., Garvin, J., Kozyrev, A., McClanahan, T., Milikh, G., Mokrousov, M., Starr, R., Sagdeev, R., Shevchenko, V., Shvetsov, V., Tret’yakov, V., Trombka, J., Varenikov, A., and Vostrukhin, A., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. 27, p. E00H27.

    ADS  Google Scholar 

  • Raney, R.K., Spudis, P.D., Bussey, B., Crusan, J., Jensen, R., Marinelli, W., McKerracher, P., Neish, C., Palsetia, M.R., Schulze, R., Sequeira, H.B., and Winters, H., The lunar mini-RF radars: hybrid polarimetric architecture and initial results, Proc. IEEE Inst. Electron. Eng., 2011, vol. 99, no. 1, pp. 808–823.

    Article  Google Scholar 

  • Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaffner, J.A., Malin, M.C., Mahanti, P., Bartels, A., Anderson, J., Tran, T.N., Eliason, E.M., McEwen, A.S., Turtle, E., Jolliff, B.L., and Hiesinger, H., Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 2010, vol. 150, pp. 81–124.

    Article  ADS  Google Scholar 

  • Salamunićcar, G., Lonćarić, S., Pina, P., Bandeira, L., and Saraiva, J., MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets, Planet. Space Sci., 2011, vol. 59, no. 1, pp. 111–131.

    Article  ADS  Google Scholar 

  • Savinykh, V.P., Zubarev, A.E., and Nadezhdina, I.E., Cosmic trends for digital photogrammetric station PHOTOMOD, 11-ya Mezhdunarodnaya nauchnotekhnicheskaya konf. “Ot snimka k karte: tsifrovye fotogrammetricheskie tekhnologii”. Tez. dokl. (Proc. 11th Sci.-Tech. Conf. “From Photo to Map: Digital Photogrammetric Techniques”), Rakurs, 2011, pp. 37–38.

    Google Scholar 

  • Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E.J., and Robinson, M.S., GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data, J. Geophys. Res., 2012, vol. 117, no. 17, p. E00H17.

    ADS  Google Scholar 

  • Smith, D.E., Zuber, M., Jackson, G., Riris, H., Neumann, G.A., Sun, X., McGarry, J.F., Cavanaugh, J.F., Ramos-Izquierdo, L.A., Zellar, R., Torrence, M.H., Mazarico, E., Connelly, J., Matuszeski, A., Ott, M., Rowlands, D.D., Zagwodzki, T., Torrence, M.H., Katz, R., Kleyner, I., Peters, C., Liiva, P., Coltharp, C., Schmidt, S., Ramsey, L., Scott, V.S., Unger, G., Krebs, D.C., Novo-Gradac, A-M.D., Shaw, G.B., and Yu, A.W., The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission, Space Sci. Rev., 2010, vol. 150, pp. 209–241.

    Article  ADS  Google Scholar 

  • Tran, T., Rosiek, M.R., Beyer, R.A., Rosiek, M.R., Beyer, R.A., Mattson, S., Howington-Kraus, E., Robinson, M.S., Archinal, B.A., Edmundson, K., Harbour, D., Anderson, E., and the LROC Sci. Team, Generating digital terrain models using LROC NAC images, ASPRS/CaGIS, 2010.

    Google Scholar 

  • Tuchin, A.G., Ballistic-navigation flight design to the Moon, planets and small Solar System bodies, Doctoral Sci. (Phys-Math.) Dissertation, Moscow, 2011.

    Google Scholar 

  • Uchaev, D.V., Uchaev, Dm.V., and Malinnikov, V.A., A texture-based algorithm for automated crater detection, Proc. European Planetary Sci. Congress, Madrid, 2012a, vol. 7, p. 717–3.

    ADS  Google Scholar 

  • Uchaev, D.V., Uchaev, Dm.V., Malinnikov, V.A., and Oberst, Yu., The way to detect automatically craters on celestial bodies surface according to their images, Geodez. Kartograf., 2012b, no. 6, pp. 3–8.

    Google Scholar 

  • Zeleny, L., Lunar Program of Russia for 2011–2020 and 2020–2025 potential cooperation, Proc. 3rd Moscow Int. Solar System Symp. (3M-S3), Moscow, 2012.

    Google Scholar 

  • Zubarev, A., Nadezhdina, I., Kozlova, N., Karachevtseva, I., Oberst, J., and Robinson, M., High-resolution terrain models from LRO stereo images for Luna-Glob landing site selection, Proc. 3rd Moscow Int. Solar System Symp. (3M-S3), Moscow, 2012a, pp. 173–174.

    Google Scholar 

  • Zubarev, A., Nadezhdina, I., Kozlova, N., Karachevtseva, I., Gusakova, E., and Oberst, J., Lunokhod-1 panoramic images and stereo topography, Proc. European Planetary Sci. Congress, Madrid, 2012b, vol. 7, p. 477.

    ADS  Google Scholar 

  • Zuber, M.T., Smith, D.E., Zellar, R.S., Neumann, G.A., Sun, X., Katz, R.B., Kleyner, I., Matuszeski, A., McGarry, J.F., Ott, M.N., Ramos-Izquierdo, L.A., Rowlands, D.D., Torrence, M.H., and Zagwodzki, T.W., The lunar reconnaissance orbiter laser ranging investigation, Space Sci. Rev., 2010, vol. 150, pp. 63–80.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Karachevtseva.

Additional information

Original Russian Text © I.P. Karachevtseva, A.A. Kokhanov, A.A. Konopikhin, I.E. Nadezhdina, A.E. Zubarev, V.D. Patratiy, N.A. Kozlova, D.V. Uchaev, Dm.V. Uchaev, V.A. Malinnikov, J. Oberst, 2015, published in Astronomicheskii Vestnik, 2015, Vol. 49, No. 2, pp. 100–116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karachevtseva, I.P., Kokhanov, A.A., Konopikhin, A.A. et al. Cartographic and geodetic methods to characterize the potential landing sites for the future Russian missions Luna-Glob and Luna-Resurs. Sol Syst Res 49, 92–109 (2015). https://doi.org/10.1134/S0038094615020021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094615020021

Keywords

Navigation