Skip to main content
Log in

Identities and Quasi-Identities of Pointed Algebras

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Each pointed enrichment of an algebra can be regarded as the same algebra with an additional finite set of constant operations. An algebra is pointed whenever it is a pointed enrichment of some algebra. We show that each pointed enrichment of a finite algebra in a finitely axiomatizable residually very finite variety admits a finite basis of identities. We also prove that every pointed enrichment of a finite algebra in a directly representable quasivariety admits a finite basis of quasi-identities. We give some applications of these results and examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oates S. and Powell M. B., “Identical relations in finite groups,” J. Algebra, vol. 1, 11–39 (1964).

    Article  MathSciNet  Google Scholar 

  2. Bryant R. M., “The laws of finite pointed groups,” Bull. London Math. Soc., vol. 14, no. 2, 119–123 (1982).

    Article  MathSciNet  Google Scholar 

  3. Basheyeva A. O., Mustafa M., and Nurakunov A. M., “Properties not retained by pointed enrichments of finite lattices,” Algebra Universalis, vol. 81, no. 4, 1–11 (2020).

    Article  MathSciNet  Google Scholar 

  4. Khan Z. A., A Generalization of Laws in Groups. Master Sci. Thesis, University of Manchester Institute of Science and Technology, Manchester (1976).

    Google Scholar 

  5. Ali Z. and Majeed A., “On the laws of nilpotent pointed-groups,” Bull. Korean Math. Soc., vol. 35, no. 4, 777–783 (1998).

    MathSciNet  MATH  Google Scholar 

  6. Burris S. and Sankappanavar H. P., A Course in Universal Algebra, Springer, New York, Heidelberg, and Berlin (1981).

    Book  Google Scholar 

  7. Gorbunov V. A., Algebraic Theory of Quasivarieties, Consultants Bureau, New York (1998) (Siberian School of Algebra and Logic).

    MATH  Google Scholar 

  8. Birkhoff G., “On the structure of abstract algebras,” Proc. Cambridge Philos. Soc., vol. 31, no. 4, 433–454 (1935).

    Article  Google Scholar 

  9. Birkhoff G., “Subdirect unions in universal algebra,” Bull. Amer. Math. Soc., vol. 50, no. 10, 764–768 (1944).

    Article  MathSciNet  Google Scholar 

  10. Nurakunov A. M., “Quasivarieties of algebras with definable principal congruences,” Algebra Logic, vol. 29, no. 1, 26–34 (1990).

    Article  MathSciNet  Google Scholar 

  11. Czelakowski J. and Dziobiak W., “The parameterized local deduction theorem for quasivarieties of algebras and its application,” Algebra Universalis, vol. 35, no. 3, 373–419 (1996).

    Article  MathSciNet  Google Scholar 

  12. McKenzie R., “Para primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties,” Algebra Universalis, vol. 8, no. 1, 336–348 (1978).

    Article  MathSciNet  Google Scholar 

  13. Nurakunov A. M., “Ultraproducts preserve finite subdirect reducibility,” Algebra Universalis, vol. 78, no. 2, 181–192 (2017).

    Article  MathSciNet  Google Scholar 

  14. Freese R. and McKenzie R., “Residually small varieties with modular congruence lattices,” Trans. Amer. Math. Soc., vol. 264, no. 2, 419–430 (1981).

    Article  MathSciNet  Google Scholar 

  15. Jónsson B., “Algebras whose congruence lattices are distributive,” Math. Scand., vol. 21, 110–121 (1967).

    Article  MathSciNet  Google Scholar 

  16. Baker K. A., “Finite equational bases for finite algebras in a congruence-distributive equational class,” Adv. Math., vol. 24, no. 3, 207–243 (1977).

    Article  MathSciNet  Google Scholar 

  17. Park R. E., Equational Classes on Non-associative Ordered Algebras. Extended Abstract of PhD Thesis, University of California, Los Angeles (1976) (37/06 p. 3998-B. Xerox order no. 77–1655).

    Google Scholar 

  18. McNulty G. F. and Shallon C. R., “Inherently nonfinitely based finite algebras,” in: Universal Algebra and Lattice Theory. Proc. 4th Int. Conf., Puebla/Mex. 1982, Springer, Berlin and Heidelberg (1983), 206–231 (Lecture Notes Math.; Vol. 1004).

  19. Murskii V. L., “On the number of \( k \)-element algebras with one binary operation without a finite basis of identities,” Problemy Kibernet., vol. 35, 5–27 (1979).

    MathSciNet  MATH  Google Scholar 

  20. Kearnes K., Szendrei A., and Willard R., “A finite basis theorem for difference-term varieties with a finite residual bound,” Trans. Amer. Math. Soc., vol. 368, no. 3, 2115–2143 (2016).

    Article  MathSciNet  Google Scholar 

  21. McKenzie R., “Finite equational bases for congruence modular varieties,” Algebra Universalis, vol. 24, no. 3, 224–250 (1987).

    Article  MathSciNet  Google Scholar 

  22. Willard R., “A finite basis theorem for residually finite, congruence meet-semidistributive varieties,” J. Symb. Log., vol. 65, no. 1, 187–200 (2000).

    Article  MathSciNet  Google Scholar 

  23. Burris S. and Lawrence J., “Definable principal congruences in varieties of groups and rings,” Algebra Universalis, vol. 9, no. 1, 152–164 (1979).

    Article  MathSciNet  Google Scholar 

  24. Belkin V. P., “Quasiidentities of finite rings and lattices,” Algebra Logic, vol. 17, no. 3, 171–179 (1978).

    Article  Google Scholar 

  25. Ol’shanskii A. Yu., “Conditional identities in finite groups,” Sib. Math. J., vol. 15, no. 6, 1000–1003 (1974).

    Article  MathSciNet  Google Scholar 

  26. Nurakunov A. M., “Characterization of relatively distributive quasivarieties of algebras,” Algebra Logic, vol. 29, no. 6, 451–458 (1990).

    Article  MathSciNet  Google Scholar 

  27. Dziobiak W., “Finitely generated congruence distributive quasivarieties of algebras,” Fund. Math., vol. 133, no. 1, 47–57 (1989).

    Article  MathSciNet  Google Scholar 

  28. Kearnes K. and McKenzie R., “Commutator theory for relatively modular quasivarieties,” Trans. Amer. Math. Soc., vol. 331, no. 2, 465–502 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the referee for the useful remarks and suggestions that enabled us to improve the article substantially.

Funding

The work was supported by Nazarbayev University FDCRG Grant no. 021220FD3851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Nurakunov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 2, pp. 241–251. https://doi.org/10.33048/smzh.2022.63.201

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basheyeva, A.O., Mustafa, M. & Nurakunov, A.M. Identities and Quasi-Identities of Pointed Algebras. Sib Math J 63, 197–205 (2022). https://doi.org/10.1134/S003744662202001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744662202001X

Keywords

UDC

Navigation