Skip to main content

Semi-linear Varieties of Lattice-Ordered Algebras

  • Chapter
  • First Online:
Petr Hájek on Mathematical Fuzzy Logic

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 6))

  • 1242 Accesses

Abstract

We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their \(\left\{ \cdot \right\} \)-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising from quantum logic. Given any such variety \(\fancyscript{V}\), we provide an explicit equational basis (relative to \(\fancyscript{V}\)) for the semi-linear subvariety \(\fancyscript{W}\) of \(\fancyscript{V}\). In particular, we show that if \(\fancyscript{V}\) is finitely based, then so is \(\fancyscript{W}\). To attain this goal, we make extensive use of tools from the theory of quasi-subtractive varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From now on, when we speak of the semilinear subvariety of a given variety \(\fancyscript{V}\), we invariably mean its largest semilinear subvariety. This is the variety generated by all totally ordered members of \(\fancyscript{V}\), equivalently, all totally ordered subdirectly irreducible members of \(\fancyscript{V}\).

  2. 2.

    If \(F\subseteq A\) and \(\mathbf {A}\) has the same signature as \(\mathbf {Fm}\), \(F\) is said to be a deductive filter on \(\mathbf {A}\) of the logic \(\left( \mathbf {Fm,}\vdash \right) \) just in case \(F\) is closed with respect to all the \(\vdash \)-entailments: if \(\varGamma \vdash t\) and \(s^{\mathbf {A}}\left( \overrightarrow{a}\right) \in F\) for all \(s\in \varGamma \), then \(t^{\mathbf {A}}\left( \overrightarrow{a}\right) \in F\).

  3. 3.

    The variety of residuated lattices is actually \(1\)-ideal determined and, in fact, in every residuated lattice the lattice of congruences is isomorphic to the lattice of ideals in the sense of Gumm-Ursini, which in turn coincide with convex normal subalgebras of such. There is a further isomorphism theorem, however (namely, between congruences and deductive filters in the sense of Galatos et al. (2007)), which does not instantiate the correspondence theorem for ideal determined varieties, but follows from Corollary 10.1.

  4. 4.

    It should be noted that a more delicate analysis in Blount and Tsinakis (2003) demonstrates that (D) can be omitted from the hypothesis of the theorem. Such refinements of special instances of a general result are to be expected.

  5. 5.

    Compare (Galatos et al. (2007), p. 426).

References

  • Anderson, M., & Feil, T. (1988). Lattice-ordered groups: An introduction. Dordrecht: Reidel.

    Book  MATH  Google Scholar 

  • Barbour, G. D., & Raftery, J. G. (1997). On the degrees of permutability of subregular varieties. Czechoslovak Mathematical Journal, 47(122), 317–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Běhounek, L., Cintula, P., & Hájek, P. (1998). Introduction to mathematical fuzzy logic (pp 1–101). (in Ref [15]).

    Google Scholar 

  • Blok, W. J. (1976). Varieties of interior algebras. PhD thesis, University of Amsterdam.

    Google Scholar 

  • Blok, W. J., & Pigozzi, D. (1989). Algebraizable logics, memoirs of the AMS, number 396. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Blok, W. J., & Pigozzi, D. (1994). On the structure of varieties with equationally definable principal congruences IV. Algebra Universalis, 31, 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Blok, W. J., & Raftery, J. G. (1999). Ideals in quasivarieties of algebras. In X. Caicedo & C. H. Montenegro (Eds.), Models, algebras and proofs (pp. 167–186). New York: Dekker.

    Google Scholar 

  • Blok, W. J., & Raftery, J. G. (2008). Assertionally equivalent quasivarieties. International Journal of Algebra and Computation, 18(4), 589–681.

    Article  MathSciNet  MATH  Google Scholar 

  • Blount, K., & Tsinakis, C. (2003). The structure of residuated lattices. International Journal of Algebra and Computation, 13(4), 437–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns, G., & Harding, J. (2000). Algebraic aspects of orthomodular lattices. In B. Coecke, D. Moore & A. Wilce (Eds.), Current research in operational quantum logic (pp. 37–65). Dordrecht: Kluwer.

    Google Scholar 

  • Burris, S., & Sankappanavar, H. P. (1981). A course in universal algebra, graduate texts in mathematics. Springer. http://www.math.uwaterloo.ca/snburris/htdocs/ualg.html

  • Chajda, I., Halaš, R., & Kühr, J. (2009). Many-valued quantum algebras. Algebra Universalis, 60(1), 63–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Chajda, I., & Kühr, J. (2013). Ideals and congruences of basic algebras. Soft Computing, 17(3), 401–410.

    Article  MATH  Google Scholar 

  • Cintula, P., Horcik, R., & Noguera, C. (2013). Non-associative substructural logics and their semi linear extensions: Axiomatization and completeness property. Review of Symbolic Logic, 6(3), 394–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Cintula, P., Hájek, P., & Noguera, C. (2011). Handbook of mathematical fuzzy logic, 2 vols. London: College Publications.

    Google Scholar 

  • Czelakowski, J. (1981). Equivalential logics I. Studia Logica, 45, 227–236.

    Article  MathSciNet  Google Scholar 

  • Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: An algebraic glimpse on substructural logics. Amsterdam: Elsevier.

    Google Scholar 

  • Galatos, N., & Ono, H. (2006). Algebraization, parametrized local deduction theorem and interpolation for substructural logics over \(\mathbf{FL}\). Studia Logica, 83(1–3), 279–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Gumm, H. P., & Ursini, A. (1984). Ideals in universal algebra. Algebra Universalis, 19, 45–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Jipsen, P., & Tsinakis, C. (2002). A survey of residuated lattices. In J. Martinez (Ed.), Ordered algebraic structures (pp. 19–56). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Kowalski, T., Ledda, A., & Paoli, F. (in press). Quasi-subtractive varieties: open filters, congruences, and the commutator. Logic Journal of the IGPL. doi:10.1093/jigpal/jzu006

  • Kowalski, T., Paoli, F., & Spinks, M. (2011). Quasi-subtractive varieties. Journal of Symbolic Logic, 76(4), 1261–1286.

    Article  MathSciNet  MATH  Google Scholar 

  • Kühr, J. (2007). Representable pseudo-BCK-algebras and integral residuated lattices. Journal of Algebra, 317, 354–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Ledda, A., Konig, M., Paoli, F., & Giuntini, R. (2006). MV algebras and quantum computation. Studia Logica, 82(2), 245–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalfe, G., Paoli, F., & Tsinakis, C. (2010). Ordered algebras and logic. In H. Hosni & F. Montagna (Eds.), Probability, uncertainty, rationality (pp. 1–85). Pisa, Edizioni della Normale.

    Google Scholar 

  • Naturman, C., & Rose, H. (1993). Interior algebras: Some universal algebraic aspects. Journal of Korean Mathematical Society, 30(1), 1–23.

    MathSciNet  MATH  Google Scholar 

  • Ursini, A. (1994). On subtractive varieties I. Algebra Universalis, 31, 204–222.

    Article  MathSciNet  MATH  Google Scholar 

  • van Alten, C. J. (2002). Representable biresiduated lattices. Journal of Algebra, 247, 672–691.

    Google Scholar 

  • van Alten, C. J. (2013). Prelinear algebras in relatively regular quasivarieties. Order, 30(2), 573–583.

    Google Scholar 

  • van Alten, C. J., & Raftery, J. G. (2004). Rule separation and embedding theorems for logics without weakening. Studia Logica, 76(2), 241–274.

    Google Scholar 

  • van Dalen, D. (2002). Intuitionistic logic. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 2, pp. 1–114). Dordrecht: Kluwer.

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to the unknown referees of this chapter for reading it with care and for offering perceptive suggestions. After submitting this chapter, we became aware of the paper Cintula et al. (2013) whose results provide a logical counterpart of some algebraic results contained in the present article. We warmly thank Petr Cintula for the pointer. The first author acknowledges the support of the Italian Ministry of Scientic Research within the FIRB project “Structures and dynamics of knowledge and cognition”, Cagliari: F21J12000140001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ledda, A., Paoli, F., Tsinakis, C. (2015). Semi-linear Varieties of Lattice-Ordered Algebras. In: Montagna, F. (eds) Petr Hájek on Mathematical Fuzzy Logic. Outstanding Contributions to Logic, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-06233-4_10

Download citation

Publish with us

Policies and ethics