Skip to main content
Log in

Asymptotic Stability for a Class of Equations of Neutral Type

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study is the problem of asymptotic but exponential stability for a class of linear autonomous neutral functional differential equations. We demonstrate that the asymptotic stability of an equation of the class takes place for all integrable initial functions if the roots of the characteristic equation lie on the left of and approach the imaginary axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Putelat T., Willis J. R., and Dawes J. H. P., “Wave-modulated orbits in rate-and-state friction,” Int. J. Nonlin. Mech., vol. 47, no. 2, 258–267 (2012).

    Article  Google Scholar 

  2. Junca S. and Lombard B., “Interaction between periodic elastic waves and two contact nonlinearities,” Math. Models Methods Appl. Sci., vol. 22, no. 4, 1–41 (2012).

    Article  MathSciNet  Google Scholar 

  3. Diekmann O., Getto P., and Nakata Y., “On the characteristic equation \( \lambda=\alpha_{1}+\left({\alpha_{2}+\alpha_{3}\lambda}\right)e^{-\lambda} \) and its use in the context of a cell population model,” J. Math. Biol., vol. 72, no. 4, 877–908 (2016).

    Article  MathSciNet  Google Scholar 

  4. Hahn W., “Zur Stabilität der Lösungen von linearen Differential-Differenzengleichungen mit konstanten Koeffitienten,” Math. Annal., vol. 131, 151–166 (1956).

    Article  Google Scholar 

  5. Ozhiganova I. A., “Definition of the domain of asymptotic stability of first-order differential equations with deviating argument,” in: Proceedings of the Seminar on the Theory of Differential Equations with Deviating Argument [Russian], vol. 1, Peoples’ Friendship University, Moscow (1962), 52–62.

  6. Gromova P. S. and Zverkin A. M., “The trigonometric series whose sum is a continuous function unbounded on the numerical axis, i.e., solution of the equation with deviating argument,” Differ. Uravn., vol. 4, no. 10, 1774–1784 (1968).

    MATH  Google Scholar 

  7. Balandin A. S. and Malygina V. V., “Exponential stability of linear differential-difference equations of neutral type,” Russian Math. (Iz. VUZ), vol. 51, no. 7, 15–24 (2007).

    Article  MathSciNet  Google Scholar 

  8. Junca S. and Lombard B., “Stability of a critical nonlinear neutral delay differential equation,” J. Differ. Equ., vol. 256, no. 7, 2368–2391 (2014).

    Article  MathSciNet  Google Scholar 

  9. Balandin A. S. and Malygina V. V., “Stability together with a derivative of a class of differential equations of neutral type,” Appl. Math. Control Sci., vol. 1, 22–50 (2019).

    Google Scholar 

  10. Balandin A. S. and Malygina V. V., “Asymptotic properties of solutions of a class of differential equations of neutral type,” Mat. Tr., vol. 23, no. 2, 3–49 (2020).

    Article  Google Scholar 

  11. El’sgol’ts L. E. and Norkin S. B., Introduction to the Theory and Application of Differential Equations with Deviating Argument, Academic, New York (1973).

    MATH  Google Scholar 

  12. Gromova P. S., “Stability of solutions of nonlinear equations of the neutral type in the asymptotically critical case,” Math. Notes, vol. 1, no. 6, 472–479 (1967).

    Article  MathSciNet  Google Scholar 

  13. Azbelev N., Maksimov V., and Rakhmatullina L., Introduction to the Theory of Linear Functional-Differential Equations, World Federation, Atlanta (1995) (Advanced Series in Mathematical Science and Engineering).

    MATH  Google Scholar 

  14. Hale J. K., Theory of Functional Differential Equations, Springer, New York, Heidelberg, and Berlin (1977).

    Book  Google Scholar 

  15. Bellman R. E. and Cooke K. L., Differential-Difference Equations, Academic, New York and London (1963).

    MATH  Google Scholar 

  16. Vlasov V. V., “Spectral problems arising in the theory of differential equations with delay,” J. Math. Sci., vol. 124, 5176–5192 (2004).

    MathSciNet  MATH  Google Scholar 

  17. Simonov P. M. and Chistyakov A. V., “On exponential stability of linear difference-differential systems,” Russian Math. (Iz. VUZ), vol. 41, no. 6, 34–45 (1997).

    MathSciNet  MATH  Google Scholar 

  18. Demidovich B. P., Lectures on the Mathematical Theory of Stability [Russian], Nauka, Moscow (1967).

    MATH  Google Scholar 

  19. Lyusternik L. A. and Sobolev V. I., A Concise Course in Functional Analysis [Russian], Higher School Publishing House, Moscow (1982).

    Google Scholar 

  20. Suetin P. K., Classical Orthogonal Polynomials [Russian], Fizmatgiz, Moscow (2007).

    Google Scholar 

  21. Szegö G., Orthogonal Polynomials, Amer. Math. Soc., Providence (1975).

    MATH  Google Scholar 

  22. Kolmanovskii V. B. and Nosov V. R., Stability and Periodic Regimes of Control Systems with Aftereffect [Russian], Nauka, Moscow (1981).

    Google Scholar 

Download references

Funding

The authors were supported by the Ministry of Education and Science of the Russian Federation (Agreement FSNM–2020–0028) and the Russian Foundation for Basic Research (Grant 18–01–00928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Malygina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygina, V.V., Balandin, A.S. Asymptotic Stability for a Class of Equations of Neutral Type. Sib Math J 62, 84–92 (2021). https://doi.org/10.1134/S0037446621010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621010092

Keywords

UDC

Navigation