Skip to main content
Log in

Electrorefining of Uranium Alloys Containing Palladium and Neodymium in 3LiCl–2KCl–UCl3 Melts

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The technology of pyrochemical processing of mixed nitride uranium–plutonium spent fuel that is applied at the experimental and demonstration energy complex of the Siberian Chemical Plant includes several certain procedures finally aimed at extraction of the target fission products. The penultimate stage of processing is planned to be the electrorefining of the products of the previous stage, namely, metallized spent nuclear fuel (SNF). To implement electrolytic refining, it is necessary to determine the processes and technological regimes of electrolytic refining of the alloys modeling the product of this stage at the processing module. The results of electrorefining of the model alloys (modeling raw materials of the electrorefining stage) on an enlarged laboratory electrolysis cell are presented. The initial parameters of uranium refining in the melts based on 3LiCl–2KCl–UCl3 have been determined earlier. The basic parameters of refining are the use of the 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) electrolyte and conducting experiments at 550°C. The uranium alloys containing palladium and neodymium are prepared by direct melting of uranium metal, PdAP-1 palladium metallic powder, and neodymium metal (99.99%) in a medium of high-purity argon (99.998%). At 550°C, the cathodic deposits are typical dendritic forms of orthorhombic α-uranium tending to needle formation with an increase in the cathode current density. An increase in the process time and the cathode current density leads to a decrease in the current efficiency because of electrode short circuit caused by cathodic deposit needles or metal fell from the cathode. The conditions of the cathodic process are clarified as a result of electrorefining experiments. For the electrorefining of the alloys U–Pd (1.59 wt %), U–Pd (1.62 wt %), U–Pd (1.54 wt %), U–Pd (1.58 wt %)–Nd (5.64 wt %), U–Pd (1.84 wt %)–Nd (6.49 wt %), and U–Pd (1.79 wt %)–Nd (6.54 wt %), uranium cathodic deposits are produced. They are subjected to chemical analysis, which shows a high purity of the resulting metallic uranium and the absence of metallic palladium and molybdenum. The palladium and uranium separation factor exceeds 5000, and that of neodymium and uranium is higher than 1000, which corresponds to the requirements imposed on purification from fission products at this stage of pyrochemical processing of SNF. Palladium is accumulated in anodic tailings, while the major mass of neodymium dissolves in molten electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. H. P. Nawada and K. Fukuda, “Role of pyro-chemical processes in advanced fuel cycles,” J. Phys. Chem. Solids 66 (2–4), 647–651 (2005).

  2. F. H. Driggs and W. C. Lilliendahl, “Preparation of metal powders by electrolysis of fused salts: I. Ductile uranium,” Indust. Eng. Chem. 22 (5), 516–519 (1930).

    Article  CAS  Google Scholar 

  3. M. Kolodney, “Production of plutonium by electrolysis,” Los Alamos Natl. Lab. Rep., LA-148 (1944).

    Google Scholar 

  4. M. Kolodney, “Preparation of the first electrolytic plutonium and of uranium from fused chlorides,” J. Electrochem. Soc. 129, 2438 (1982).

    Article  CAS  Google Scholar 

  5. C. Marzano and R. A. Noland, “The electrolytic refining of uranium,” Argonne Natl. Lab. Rep., ANL-5102 (1953).

  6. L. W. Niedrach and A. C. Glamm, “Uranium purification by electrorefining,” J. Electrochem. Soc. 103 (9), 521–528 (1956).

    Article  CAS  Google Scholar 

  7. G. Boisdie, G. Chauvin, H. Coriou, and J. Hure, “Contribution a la connaissance du mecanisme de l’electroraffinage de l’uranium en bains de sels fondus,” Electrochim. Acta 5 (1–2), 54–71 (1961).

  8. G. Chauvin, H. Coriou, and A. Simenauer, “Phenomene de concentration du fer au voisinage de la cathode au cours de l’electroraffinage de l’uranium en bains de sels fondus,” Electrochim. Acta 8 (5), 323–332 (1963).

    Article  Google Scholar 

  9. G. Chauvin, H. Coriou, P. Jabot, and A. Laroche, “Production d’uranium de haute purete par electroraffinage en bains de sels fondus,” J. Nucl. Mater. 11 (2), 183–192 (1964).

    Article  CAS  Google Scholar 

  10. Y. H. Kang, J. H. Lee, S. C. Hwang, J. B. Shim, E. H. Kim, and S. W. Park, “Electrodeposition characteristics of uranium by using a graphite cathode,” Carbon 44, 3142 (2006).

    Article  CAS  Google Scholar 

  11. J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, E. H. Kim, and S. W. Park, “Application of graphite as a cathode material for electrorefining of uranium,” Nucl. Technol. 162 (2008).

  12. D. I. Nikitin, D. A. Zolotarev, A. D. Mukhametdyanov, V. A. Volkovich, and I. B. Polovov, “Uranium electrorefining in 3LiCl–2KCl based melts,” ECS Trans. 98 (10), 443–451 (2020).

    Article  CAS  Google Scholar 

  13. Z. Tomczuk, J. P. Ackerman, R. D. Wolson, and W. E. Miller, “Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel,” J. Electrochem. Soc. 139 (12), 3523–3528 (1992).

    Article  CAS  Google Scholar 

  14. J. L. Willit, W. E. Miller, and J. E. Battles, “Electrorefining of uranium and plutonium—A literature review,” J. Nucl. Mater. 195 (3), 229–249 (1992).

    Article  CAS  Google Scholar 

  15. M. Kuratal, N. Yahagi, S. Kitawaki, A. Nakayoshi, and M. Fukushima, “Sequential electrolysis of U–Pu alloy containing a small amount of Am to recover U and U–Pu–Am products,” J. Nucl. Sci. Technol. 46 (2), 175–183 (2009).

    Article  Google Scholar 

  16. S. Kitawaki, T. Shinozaki, M. Fukushima, T. Usami, N. Yahagi, and M. Kurata, “Recovery of U–Pu alloy from MOX using a pyroprocess series,” J. Nucl. Mater. 162 (2), 118–123 (2007).

    Google Scholar 

  17. J. Jang, T. Kim, G.-Y. Kim, D. Yoon, and S. Lee, “Uranium recovery via electrochemical deposition with a liquid zinc cathode followed by electrochemical oxidation of rare earth metals,” J. Nucl. Mater. 520, 245–251 (2019).

    Article  CAS  Google Scholar 

  18. D. S. Maltsev, V. A. Volkovich, D. B. Vasin, and E. N. Vladykin, “An electrochemical study of uranium behaviour in LiCl–KCl–CsCl eutectic melt,” J. Nucl. Mater. 467, 956–963 (2015).

    Article  CAS  Google Scholar 

  19. V. A. Kesikopulos, A. M. Potapov, A. E. Dedyukhin, and Yu. P. Zaikov, “Production of UPd3 intermetallic compound and study of its thermodynamic characteristics,” in Proceedings of Workshop on Electrochemistry in Distributed and Nuclear Power Generation (Azhur, Nalchik, 2022), pp. 224–226.

Download references

Funding

This work was supported by JSC Proryv.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Nikitin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.I., Polovov, I.B. & Rebrin, O.I. Electrorefining of Uranium Alloys Containing Palladium and Neodymium in 3LiCl–2KCl–UCl3 Melts. Russ. Metall. 2023, 1031–1039 (2023). https://doi.org/10.1134/S0036029523080177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523080177

Navigation