Skip to main content
Log in

Effect of the Substrate Material and the Parameters of Silicon Electrodeposition from the LiCl–KCl–CsCl–K2SiF6 Melt on the Morphology of the Deposit

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The development of methods for producing silicon and materials based on it with controllable morphology and composition of microimpurities is a challenging problem, since such materials are widely used in modern microelectronics and power engineering. In this work, the influence of the substrate material and the parameters of silicon electrodeposition from a low-melting low-fluoride LiCl–KCl–CsCl melt with a K2SiF6 addition at a temperature of 545°C on the morphology of the deposit is studied. To determine the range of electrodeposition parameters, the regularities in the cathodic process in this melt are studied on glassy carbon, molybdenum, and nickel using cyclic voltammetry and square-wave voltammetry. This process is shown not to be electrochemically reversible on all the substrates and to proceed in two stages. Varying the electrodeposition parameters, three silicon deposits are formed for each of the substrates. On glassy carbon, a silicon film in the form of spherical dendrites uniformly distributed over the electrode surface and silicon fibers are deposited depending on the electrodeposition conditions. On molybdenum, silicon is deposited in the form of ordered dendrites, fibers, and a continuous coating consisting of spherical particles, as in the case of glassy carbon, depending on the electrolysis conditions. On nickel electrodes, nickel silicides and also silicon dendrites and fibers are deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. Roger, L. Schorn, M. Heydarian, A. Farag, T. Feeney, D. Baumann, H. Hu, F. Laufer, W. Duan, K. Ding, A. Lambertz, P. Fassi, and M. Worgull, “Laminated monolithic perovskite/silicon tandem photovoltaics,” Adv. Energy Mater. 12, 2200961 (2022).

    Article  CAS  Google Scholar 

  2. A. Kuchmizhak, V. Il’yaschenko, A. Sergeev, A. Gerasimenko, A. Gutakovskii, E. Mitsai, A. Amosov, and A. Shevlyagin, “Mg2Si is the new black: Introducing a black silicide with >95% average absorption at 200–1800 nm wavelengths,” Appl. Surf. Sci. 602, 154321(2022).

    Article  Google Scholar 

  3. I. M. Anfimov, S. P. Kobeleva, M. D. Malinkovich, I. V. Shchemerov, O. V. Toporova, and Yu. N. Parkhomenko, “Mechanisms of electroconductivity in silicon–carbon nanocomposites with nanosized tungsten inclusions within a temperature range of 20–200°C,” Russ. Microelectronics 42, 488–491 (2013).

    Article  CAS  Google Scholar 

  4. A. M. Leonova, O. A. Bashirov, N. M. Leonova, A. S. Lebedev, A. A. Trofimov, and A. V. Suzdaltsev, “Synthesis of C/SiC mixtures for composite anodes for lithium-ion power sources,” Appl. Sci. 13, 901 (2023).

    Article  CAS  Google Scholar 

  5. A. Y. Galashev, “Computer development of silicone anodes for lithium-ion batteries: a review,” Electrochem. Mater. Technol. 1 (1), 20221005 (2022).

    Article  Google Scholar 

  6. F. Wang, P. Li, W. Li, and D. Wang, “Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery,” ACS Nano 16, 7689–7700 (2022).

    Article  CAS  Google Scholar 

  7. A. A. Trofimov, A. M. Leonova, N. M. Leonova, and T. A. Gevel, “Electroposition of silicon from molten KCl–K2SiF6 for lithium-ion batteries,” J. Electrochem. Soc. 169, 020537 (2022).

    Article  CAS  Google Scholar 

  8. T. L. Kulova, “New electrode materials for lithium-ion batteries (review),” Russ. J. Electrochem. 49, 1–25 (2013).

    Article  CAS  Google Scholar 

  9. T. Gevel, S. Zhuk, N. Leonova, A. Leonova, A. Trofimov, A. Suzdaltsev, and Yu. Zaikov, “Electrochemical synthesis of nano-sized silicon from KCl–K2SiF6 melts for powerful lithium-ion batteries,” Appl. Sci. 11, 10927 (2021).

    Article  CAS  Google Scholar 

  10. A. V. Kosov, O. L. Semerikova, S. V. Vakarin, O. V. Drishenkova, A. A. Trofimov, A. M. Leonova, N. M. Leonova, and Yu. P. Zaikov, “Effect of electrochemical treatment of silicon surface in K2WO4–Na2WO4–WO3 melt on its photovoltaic response,” J. Electrochem. Soc. 168 (12), 126503 (2021).

    Article  CAS  Google Scholar 

  11. X. Zou, L. Ji, J. Ge, D. R. Sadoway, E. T. Yu, and A. J. Bard, “Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications,” Nature Comm. 10, 5772 (2019).

    Article  CAS  Google Scholar 

  12. A. V. Kaibichev and I. A. Kaibichev, “Features of technical silicon cleaning in melting in helium with impact on electric field melt on molybdenum and graphite electrode,” Rasplavy, No. 3, 258–264 (2019).

    Google Scholar 

  13. S. Medjahed, A. Kheloufi, E. Bobocioiu, A. Kefaifi, F. Kerkar, and Kh. Lebbou, “Quartz ore beneficiation by reverse flotation for silicon production,” Silicon 14, 87–97 (2022).

    Article  CAS  Google Scholar 

  14. A. V. Suzdaltsev, “Silicon electrodeposition for microelectronics and distributed energy: a mini-review,” Electrochem. 3 (4), 760–768 (2022).

    Article  CAS  Google Scholar 

  15. M. V. Laptev, A. V. Isakov, O. V. Grishenkova, A. S. Vorob’ev, A. O. Khudorozhkova, L. A. Akashev, and Y. P. Zaikov, “Electrodeposition of thin silicon films from the KF–KCl–KI–K2SiF6 melt,” J. Electrochem. Soc. 167, 042506 (2020).

    Article  CAS  Google Scholar 

  16. H. Xie, H. Zhao, J. Liao, and H. Yin, “Electrochemically controllable coating of a functional silicon film on carbon materials,” Electrochim. Acta 269, 610–616 (2018).

    Article  CAS  Google Scholar 

  17. T. A. Gevel, S. I. Zhuk, N. M. Leonova, A. M. Leonova, A. V. Suzdaltsev, and Yu. P. Zaikov, “Electroposition of silicon from the KCl–CsCl–K2SiF6 melt,” Russ. Met. (Metally), No. 8, 958–964 (2022).

  18. R. K. Abdurakhimova, M. V. Laptev, N. M. Leonova, A. M. Leonova, A. S. Shmygalev, and A. V. Suzdaltsev, “Electroreduction of silicon from the NaI–KI–K2SiF6 melt for lithium-ion power sources,” Chimica Techno Acta 9 (4), 20229424 (2022).

    Article  CAS  Google Scholar 

  19. K. Yasida and T. Nohira, “Electrochemical production of silicon,” High Temp. Mater. & Proc. 41, 247–278 (2022).

    Article  Google Scholar 

  20. S. I. Zhuk, A. V. Isakov, A. P. Apisarov, O. V. Grishenkova, V. A. Isaev, E. G. Vovkotrub, and Yu. P. Zaikov, “Electrodeposition of continuous silicon coatings from the KF–KCl–K2SiF6 melts,” J. Electrochem. Soc. 164, H5135–H5138 (2017).

    Article  CAS  Google Scholar 

  21. T. Gevel, S. Zhuk, A. V. Suzdaltsev, and Yu. P. Zaikov, “Study into the possibility of silicon electrodeposition from a low-fluoride KCl–K2SiF6 melt,” Ionics 28, 3537–3545 (2022).

    Article  CAS  Google Scholar 

  22. S. K. Padamata and G. Saevarsdottir, “Silicon electrowinning by molten salts electrolysis,” Frontiers in Chemistry 11, 1133990 (2023).

    Article  CAS  Google Scholar 

  23. M. Cai, Zh. Zhao, X. Qu, J. Qu, Z. Hu, H. Shi, Sh. Gao, D. Wang, and H. Yin, “Refreshing the liquid–gas reaction interface to provoke the zincothermic reduction of SiCl4 to prepare lithium-storage nano silicon,” Energy Stor. Mater. 57, 568–576 (2023).

    Google Scholar 

  24. Zh. Zhao, M. Cai, H. Zhao, Q. Ma, H. Xie, P. Xing, Y. X. Zhuang, and H. Yin, “Zincothermic-reduction-enabled harvesting of an Si/C composite from rice husks for a Li-ion battery anode,” ACS Sustainable Chem. Eng. 10 (15), 5035–5042 (2022).

    Article  CAS  Google Scholar 

  25. Yu. Zaikov, V. Batukhtin, N. Shurov, and A. Suzdaltsev, “High-temperature electrochemistry of calcium,” Electrochem. Mater. Technol. 1 (1), 20221007 (2022).

    Article  Google Scholar 

  26. Y. Ustinova, O. Pavlenko, T. Gevel, S. Zhuk, A. Suzdal’tsev, and Y. Zaikov, “Electrodeposition of silicon from the low-melting LiCl–KCl–CsCl–K2SiF6 electrolytes,” J. Electrochem. Soc. 169, 032506 (2022).

    Article  CAS  Google Scholar 

  27. O. B. Pavlenko, Yu. A. Ustinova, S. I. Zhuk, A. V. Suzdaltsev, and Yu. P. Zaikov, “Silicon electrodeposition from the low-melting LiCl–KCl–CsCl melts,” Russ. Met. (Metally), No. 8, 818–824 (2022).

  28. Yu. Parasotchenko, A. Suzdaltsev, O. Pavlenko and Yu. Zaikov, “Study of the silicon electrochemical nucleation in LiCl–KCl–SCsCl–K2SiF6 melt,” J. Electrochem. Soc. 170 (2), 022505 (2023).

    Article  CAS  Google Scholar 

  29. A. Yu. Mikolaev, A. R. Mullabaev, A. V. Suzdaltsev, V. A. Kovrov, A. S. Kholkina, V. Yu. Shishkin, and Yu. P. Zaikov, “Purification of alkali-metal chlorides by zone recrystallization for the use in pyrochemical processing of spent nuclear fuel,” Atom. Energy 131 (4), 195–201 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Scanning electron microscopy was carried out in the Shared Access Center Composition of Compounds, Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Funding

This work was performed in the framework of agreement no. 075-03-2022-011 of January 14, 2022 (project no. FEUZ-2020-0037 in EGISU NIOKTR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Pavlenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, O.B., Parasotchenko, Y.A., Suzdal’tsev, A.V. et al. Effect of the Substrate Material and the Parameters of Silicon Electrodeposition from the LiCl–KCl–CsCl–K2SiF6 Melt on the Morphology of the Deposit. Russ. Metall. 2023, 235–243 (2023). https://doi.org/10.1134/S0036029523020155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523020155

Keywords:

Navigation