Skip to main content
Log in

Formation of Intermediate Compounds and Poly- and Disulfide Ions during the Pressure Oxidation of Pyrrhotite

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—Proposed intermediate phases and their thermal decomposition are discussed on the basis of the diagram of low-temperature phase relations and iron sulfide transformations. The formation of pyrite during pyrrhotite oxidation is refined using chemical reactions involving iron and sulfur ions in the thermal decomposition of greigite and iron trisulfide. The further oxidation reactions of disulfide ions of pyrite with the formation of polysufide ions are presented. A relationship between the composition of the nonequilibrium nonstoichiometric layer on the pyrrhotite surface during oxidation and intermediate phases is found. Detailed mineralogical–geochemical data on the hydrothermal sulfide aggregates of “black smokers” are given. Early pyrrhotite is found to form pyrite fringes on the surface at first, and then the pyrrhotite is almost completely substituted by pyrite and/or marcasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The schemes of reactions (9)–(12) are taken from original papers.

  2. AO Polyarnaya Morskaya Geologorazvedochnaya Ekspeditsiya (Polar Marine Geosurvey Expedition).

REFERENCES

  1. I. Snowball and M. Torii, “Incidence and significance of magnetic iron sulphides in quaternary sediments and soils,” Quaternary Climates. Environments Magnetism, October, 199–230 (1999).

  2. A. J. Devey, “Computer modelling studies of mackinavite, greigite and cubic FeS,” PhD Thesis, University College, London, 2009.

  3. S. V. Kozerenko, Experimental Study of Conditions for the Formation of Iron Sulfides at Low and Elevated Temperatures, Ed. by V. L. Barsukov (Nauka, Moscow, 1971), pp. 135–146.

    Google Scholar 

  4. L. Guowei, Z. Baomin, Y. Feng, and A. Alla, “High-purity Fe3S4 greigite microcrystals for magnetic and electrochemical performance,” Chem. Mater. 26, 5821–5829 (2014).

    Article  Google Scholar 

  5. C. F. Jones, S. Le Count, R. St. C. Smart, and T. J. White, “Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies,” Appl. Surf. Sci. 55, 65–85 (1992).

    Article  CAS  Google Scholar 

  6. S. S. Starchikov, “Magnetic, structural, and electronic properties of nanoparticles of iron sulfides and oxides with different crystal structures,” Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow, 2015.

  7. H. L. Barnes, “Hydrothermal processes the development of geochemical concepts in the latter half of the twentieth century,” Geochem. Perspectives 4 (1), 31–45 (2015).

    Article  Google Scholar 

  8. Yu. L. Mikhlin, A. V. Kuklinskii, G. L. Pashkov, et al., “Electrochemical oxidation of pyrrhotite in acidic solutions,” Elektrokhimiya 37 (12), 1466–1471 (2001).

    Google Scholar 

  9. Yu. L. Mikhlin, “Nonequilibrium nonstoichiometric surface layer in reactions of metal sulfides,” Ros. Khim. Zh. (Zh. Vses. Khim. O-va im. D.I. Mendeleeva) XLV (3), 80–85 (2001).

  10. A. V. Kuklinskii, Yu. L. Mikhlin, G. L. Pashkov, et al., “Conditions for the formation of the nonequilibrium nonstoichiometric layer on pyrrhotite in acid solutions,” Elektrokhimiya 37 (12), 1458–1465 (2001).

    Google Scholar 

  11. Yu. L. Mikhlin, “Disordered surface layers of metal sulfides and their reactivity,” Fiz. Khim. Stekla 33 (4), 555–565 (2007).

    Google Scholar 

  12. K. Crundwell, “The dissolution and leaching of minerals mechanisms, myths and misunderstandings,” Hydrometallurgy 139, 132–148 (2013).

    Article  CAS  Google Scholar 

  13. A. G. Kitai, I. F. Gablina, and A. O. Bol’shikh, “Formation of elemental sulfur during the oxidation leaching of chalcocite,” Russ. Metall. (Metally), No. 5, 343–356 (2022).

  14. S. S. Naboichenko, Ya. M. Shneerson, M. I. Kalashnikov, et al., Autoclave Hydrometallurgy of Nonferrous Metals (Ural. Gos. Tekhn. Univ. UPI, Yekaterinburg, 2008), Vol. 1.

  15. G. I. Barlova and G. A. Khan, “Influence of the composition and crystal-chemical features of artificial pyrrhotites on their properties,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 2, 3–8 (1971).

  16. V. V. Onufrienok, “Crystal-chemical pyrrhotite–pyrite transformation induced by cationic vacancies. Modern science intensive technologies,” Geologo-Mineralogicheskie Nauki, No. 5, 116–122 (2013).

    Google Scholar 

  17. Y. Mikhlin, Y. Tomashevich, and S. Vorobyev, “Hard X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides,” Appl. Surf. Sci. 387, 796–804 (2016).

    Article  CAS  Google Scholar 

  18. J. D. Rimstidt and D. J. Vaughan, “Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism,” Geochim. Cosmochim. Acta 67 (5), 873–880 (2003).

    Article  CAS  Google Scholar 

  19. R. W. Nicholson and J. M. Scharer, “Environmental geochemistry of sulfide oxidation,” in Laboratory Studies of Pyrrhotite Oxidation Kinetics, Ed. by C. N. Alpers and D. W. Blowes (Washington, 1994), Vol. 550, pp. 14–30.

    Google Scholar 

  20. R. G. Burns and D. S. Fisher, “Iron–sulfur mineralogy of mars: Magmatic evolution and chemical weathering products,” J. Geophys. Res. 95 (B9), 415–421 (1990).

    Google Scholar 

  21. D. W. Blowes, C. J. Ptacek, J. L. Jambor, and C. G. Weisener, “The geochemistry of acid mine drainage,” Treat. Geochem. 9, 149–204 (2003).

    Article  Google Scholar 

  22. A. R. Lennie, S. A. T. Redfern, P. E. Champness, C. P. Stoddart, P. F. Schofield, and D. J. Vaughan, “Transformation of mackinawite to greigite: an in situ X-ray powder diffraction and transmission electron microscope study,” Amer. Mineralogist 82, 302–309 (1997).

    Article  CAS  Google Scholar 

  23. Y. L. Norman, “Characterization of the iron sulfide oxidation products formed during reductive dechlorination of chlorinated aliphatic contaminants,” PhD Thesis, Oklahoma, 2016.

  24. S. Boursiquot, M. Mullet, M. Abdelmoula, J.-M. Genin, and J.-J. Ehrhardt, “The dry oxidation of tetragonal FeS1 – x mackinawite,” Phys. Chem. Miner. 28, 600–611 (2001).

    Article  CAS  Google Scholar 

  25. A. R. Pratt, I. J. Muir, and H. W. Nesbitt, “X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation,” Geochim. Cosmochim. Acta 58 (2), 827–841 (1994).

    Article  CAS  Google Scholar 

  26. N. Takeada, N. Tokitoh, and R. Okazaki, “Polysulfido complexes of main group and transition metals,” Top. Curr. Chem. 231, 153–202 (2003).

    Article  Google Scholar 

  27. B. Delmon, Kinetics of Heterogeneous Reactions (Mir, Moscow, 1972).

  28. V. V. Onufrienok, “Crystal-chemical transformations in nonstoichiometric minerals induced by point defects,” Extended Abstract of Doct. Sci. (Geol.-Mineral.) Dissertation, Tomsk, 2012.

  29. E. F. Bertaut, “Structure de FeS stoichiometrique,” Bull. Soc. Franc., No. 2 (1956).

  30. R. Kollong, Nonstoichiometry (Mir, Moscow, 1974).

  31. A. G. Kitai and V. I. Korsunskii, “On a local temperature increase during sulfide concentrate leaching,” Tsvetn. Met., No. 8, 17–19 (1981).

  32. I. F. Gablina, I. G. Dobretsova, A. A. Laiba, E. V. Narkevskii, F. E. Maksimov, and V. Yu. Kuznetsov, “Specific features of sulfide ores from the Pobeda hydrothermal field (in latitude 17°07′–17°08′ North of the Mid-Atlantic Ridge),” Litologiya i Poleznye Iskopaemye, No. 6, 475–500 (2018).

    Google Scholar 

  33. D. Ricard and G. Luther, “Chemistry of iron sulfides,” Chem. Rev. 107, 514–562 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kitai.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitai, A.G., Gablina, I.F., Lyutkevich, A.D. et al. Formation of Intermediate Compounds and Poly- and Disulfide Ions during the Pressure Oxidation of Pyrrhotite. Russ. Metall. 2022, 1354–1368 (2022). https://doi.org/10.1134/S0036029522110064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522110064

Navigation