Skip to main content
Log in

Role of a Carbon-Fluorine-Containing Additive in the Formation of the Structure, Defect Substructure, and Fracture Surface of an Electric Arc Sprayed Coating

  • APPLIED PROBLEMS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The role of a carbon-fluorine-containing additive in a flux based on the slag of silicomanganese in the formation of the structural-phase state, dislocation substructure, and fracture surface of the coating fabricated by electric arc surfacing using an Sv-08GA wire is analyzed. The relative ferrite and perlite contents and the scalar and excess dislocation densities are quantitatively estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Kapralov, S. V. Raikov, E. A. Budovskikh, V. E. Gromov, E. S. Vashchuk, and Yu. F. Ivanov, “Structure, phase composition, and properties of surfacing formed on steel by electric arc method,” Fundam. Probl. Sovr. Materialoved. 11 (3), 334–339 (2014).

    Google Scholar 

  2. V. E. Gromov, E. V. Kapralov, S. V. Raikov, Yu. F. Ivanov, and E. A. Budovskikh, “Structure and properties of wear-resistant coatings deposited by the electric arc method on steel with flux-cored electrodes,” Usp. Fiz. Met. 15, 211–232 (2014).

    Article  Google Scholar 

  3. R. Li, D. Y. He, Z. Zhou, Z. J. Wang, and X. Y. Song, “Wear and high temperature oxidation behavior of wire arc sprayed iron based coatings,” Surf. Eng. 30, 784–790 (2014).

    Article  Google Scholar 

  4. R. Kejžar and J. Grum, “Hardfacing of wear-resistant deposits by MAG welding with a flux-cored wire having graphite in its filling,” Weld. Int. 20, 961–976 (2005).

  5. H. R. Ma, X. Y. Chen, J. W. Li, C. T. Chang, G. Wang, H. Li, X. M. Wang, and R. W. Li, “Fe-based amorphous coating with high corrosion and wear resistance,” Surf. Eng. 46, 1–7 (2016).

    Google Scholar 

  6. Yu. Zhuk, “Super-hard wear-resistant coating systems,” Mater. Technol. 14, 126–129 (1999).

    Article  CAS  Google Scholar 

  7. M. Kirchgabner, E. Badisch, and F. Franek, “Behaviour of iron-based hard facing alloys under abrasion and impact,” Wear 265, 772–779 (2008).

    Article  Google Scholar 

  8. N. A. Kozyrev, A. I. Gusev, R. E. Kryukov, A. A. Usol’tsev, and L. P. Baschenko, “Development of new flux-cored electrodes for surfacing. Flux-cored electrode for surfacing of the parts working under shock-abrasive wear conditions,” Chern. Metall. Byul. Nach.-Tekh. Ekonom. Inf., No. 7, 70–77 (2018).

  9. N. A. Kozyrev, R. E. Kryukov, N. E. Kryukov, A. A. Usol’tsev, and A. R. Mikhno, “Development of new welding fluxes using carbon-fluorinated additives,” Teoriya Tekhnol. Metall. Proizv., No. 3(26), 17–25 (2018).

  10. Electron-Ion-Plasma Modification of the Surfaces of Nonferrous Metals and Alloys, Ed. by N. N. Koval and Yu. F. Ivanov (NTL, Tomsk, 2016).

    Google Scholar 

  11. F. R. Egerton, Physical Principles of Electron Microscopy (Springer Int. Publ., Basel, 2016).

    Book  Google Scholar 

  12. C. S. S. R. Kumar, Transmission Electron Microscopy. Characterization of Nanomaterials (Springer, New York, 2014).

    Book  Google Scholar 

  13. C. B. Carter and D. B. Williams, Transmission Electron Microscopy (Springer Int. Publ., Berlin, 2016).

    Book  Google Scholar 

  14. V. P. Rotshtein, D. I. Proskurovskii, and G. E. Ozur, Modification of the Surface Layers of Metallic Materials by Low-Energy High-Current Electron Beams (Nauka, Novosibirsk, 2019).

    Google Scholar 

  15. Fractography and Atlas of Fractographs: A Handbook (Metallurgiya, Moscow, 1982).

  16. L. M. Utevskii, Diffraction Electron Microscopy in Metal Science (Metallurgiya, Moscow, 1973).

    Google Scholar 

  17. K. Andrews, D. Dyson, and S. Keown, Interpretation of Electron Diffraction Patterns (Macmillan, London, 1968).

    Google Scholar 

  18. K. S. Chernyavskii, Stereology in Metal Science (Metallurgiya, Moscow, 1977).

    Google Scholar 

  19. N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, “Long-range stress fields, curvature–torsion of a crystal lattice, and the stages of plastic deformation. Measurement methods and results,” in Proceedings of International Conference on New Methods in Physics and Mechanics of Deformable Solids (TGU, Tomsk, 1990), pp. 83–93.

  20. P. Hirsch, A. Howie, R. Nicholson, D. Pashley, and M. Whelan, Electron Microscopy of Thin Crystals (Plenum, New York, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gromov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, R.E., Gromov, V.E., Ivanov, Y.F. et al. Role of a Carbon-Fluorine-Containing Additive in the Formation of the Structure, Defect Substructure, and Fracture Surface of an Electric Arc Sprayed Coating. Russ. Metall. 2022, 1307–1311 (2022). https://doi.org/10.1134/S0036029522100159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522100159

Keywords:

Navigation