Skip to main content
Log in

Electrical Conductivity of Ammonium Perrhenate Solutions and the Calculation of Its Activation Energy

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The electrical conductivity of the aqueous solutions of ammonium perrhenate is studied in the reagent concentration range 0.01–0.2 mol/L based on metal at aqueous solution temperatures of 20–50°C. The electrical conductivity is found to increase linearly with the electrolyte temperature and nonlinearly with the reagent concentration. The temperature coefficients and the activation energy of the electrical conductivity are calculated in the given concentration and temperature ranges. The activation energy of the electrical conductivity is shown to decrease as the solution temperature increases and to slightly depend on the ammonium perrhenate concentration in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Palant, I. D. Troshkina, and A. M. Chekmarev, Rhenium Metallurgy (Nauka, Moscow, 2007).

    Google Scholar 

  2. A. G. Kasikov and A. M. Petrov, Recycling of Rhenium (RIOR, NITs Infra-M, Moscow, 2014).

  3. A. A. Palant, I. D. Troshkina, A. M. Chekmarev, and A. I. Kostylev, Rhenium Technology (OOO Galleya-Print, Moscow, 2015).

    Google Scholar 

  4. Leiting Shen, Fiseha Tesfaye, Xiaobin Li, Daniel Landberg, and Pekka Taskinen, “Review of rhenium and recycling technologies from primary and secondary resources,” Minerals Eng. 161, art. 106719 (2021). https://doi.org/10.1016/j.mineng.2020.106719

  5. G. A. Kolobov, V. V. Pavlov, A. K. Pecheritsa, and A. D. Prokhorova, “Recycling of rhenium from superalloy waste,” Metallurgiya, No. 2 (40), 44–50 (2019).

    Google Scholar 

  6. A. N. Zagorodnyaya, Z. S. Abisheva, and A. S. Sharipova, “Surrent state of ammonium perrhenate in Kazakhstan,” in Proceedings of the International Scientific–Practical Conference on Rhenium, Tungsten, and Molybdenum–2016. Research, Technological Developments, and Industrial Application (OAO Institute GINTsVETMET, Moscow, 2016), pp. 27–31.

  7. A. M. Petrova and A. G. Kasikov, “Rockets don’t fly without rhenium” Redkie Met., No. 1, 24–27 (2013).

  8. A. V. Balikhin and O. E. Barkovskaya, “Perspectives of rhenium extraction from volcanic gases,” Kompleks. Ispol’z. Miner. Syr’ya, No. 3 (302), 16–24 (2017).

    Google Scholar 

  9. R. P. Singh Gaur, T. A. Wolfe, and S. A. Braymiller, “Recycling of rhenium-containing wire scrap,” Int. J. Refrac. Met. Hard Mater. 50, 79–85 (2015).

    Article  CAS  Google Scholar 

  10. Dang Xu, Su Zheng, Pengqi Chen, Bangzheng Wei, Jiuxing Zhang, and Jigui Cheng, “Recycling of rhenium from W–Re-alloyed scraps by a pyrometallurgical method,” J. Sustainable Metall. 8, 148–155 (2022).

    Article  Google Scholar 

  11. K. Leszczynska-Seida, T. Majewski, G. Benke, J. Pietaszewski, K. Anyszkiewicz, J. Michalowski, A. Chmielarz, “Production of high-purity ammonium perrhenate for W–Re–Ni–Fe heavy alloys,” J. Alloys Compd. 513, 347–352 (2012).

    Article  Google Scholar 

  12. E. E. Mal’tseva, A. A. Blokhin, Yu. V. Murashkin, and M. A. Mikhailenko, “Increase in the purity of ammonium perrhenate solution with respect to molybdenum(VI) at the sorption extraction of rhenium from the Mo-containing solutions,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Metall., No. 4, 30–38 (2017).

  13. A. N. Zagorodnyaya, Z. S. Abisheva, L. Ya. Agapova, and A. S. Sharipova, “Purification of technical ammonium perrhenate from potassium by recrystallization, sorption, and membrane electrodialysis,” Khim. Technol. 19 (11), 482–490 (2018).

    Google Scholar 

  14. A. N. Zagorodnyaya, A. S. Sharipova, Z. S. Abisheva, and L. Ya. Agapova, “Behavior of some elements determined in ammonium perrhenate in extraction technology of its production,” Khim. Technol. 18 (8), 376–384 (2017).

    Google Scholar 

  15. S. B. Lyapin, P. Yu. Shtyrlov, A. A. Khaitmitov, V. P. Guro, and A. A. Atakuziev, “An ion-exchange method for purifying ammonium perrhenate from potassium impurity,” Gorn. Vestn. Uzb., No. 2 (17), pp. 59–60 (2004).

  16. . N. Zagorodnyaya, K. A. Linnik, A. S. Sharipova, and Z. S. Abisheva, “Effect of the supersaturation coefficient on the behavior of elements–impurities upon recrystallization of technical ammonium perrhenate,” Kompleks. Ispol’z. Miner. Syr’ya, No. 3 (298), 22–29 (2016)

    Google Scholar 

  17. Handbook of Electrochemistry, Ed. by A. M. Sukhotin (Khimiya, Leningrad, 1981).

    Google Scholar 

  18. O. M. Levchuk and A. M. Levin, “Electrical conductivity of ammonium solutions containing rhenium(VII),” Metally, No. 5, 32–35 (2014).

    Google Scholar 

  19. O. M. Levchuk, A. M. Levin, and V. A. Bryukvin, “Effect of tungsten(VI) and molybdenum(VI) ions on the electrical conductivity of ammonium hydroxide solutions,” Metally, No. 2, 88–91 (2016).

    Google Scholar 

  20. A. A. Palant and G. I. Anufrieva, “Electrical conductivity of ammonium hedroxide aqueous solutions containing tungsten and molybdenum ions,” Hydrometallurgy 42 (93), 435–439 (1996).

    Article  CAS  Google Scholar 

  21. A. A. Afifi and S. P. Azen, Statistical Analysis. A Computer Oriented Approach (Academic Press, 1972).

    Google Scholar 

  22. V. V. Shcherbakov, Yu. M. Artemkina, T. N. Ponamareva, and A. D. Kirillov, “Electrical conductivity of the ammonium–water system,” Zh. Neorg. Khim. 54 (2), 321–323 (2009).

    CAS  Google Scholar 

  23. V. V. Shcherbakov, Z. Salem, V. I. Ermakov, and A. F. Vorob’ev, “Electrical conductivity and the permittivity of aqueous ammonium solutions,” Electrokhimiya 28, 283–286 (1992).

    CAS  Google Scholar 

  24. L. T. Vlaev and V. G. Georgieva, “Activation energies of the electrical conductivity of aqueous solutions of sulfuric acid, selenic acid, and potassium tellurate,” Electrokhimiya 40 (6), 768–772 (2004).

    Google Scholar 

  25. O. G. Kuznetsova, A. M. Levin, M. A. Sevost’yanov, O. I. Tsybin, and A. O. Bol’shikh, “Electrical conductivity of ammonium-alkali solutions and the determination of its activation energy,” Metally, No. 5, 93–97 (2019).

    Google Scholar 

  26. A. N. Mashina, Yu. M. Artemkina, and V. V. Shcherbakov, “Temperature dependence of the activation energy of the electrical conductivity of aqueous solutions of strong electrolytes,” Usp. Khim. Khim. Technol. 31 (4), 49–51 (2017).

    Google Scholar 

  27. A. A. Ivanov, “Electrical conductivity of aqueous solutions of acids in binary and ternary water–electrolyte systems,” Zh. Neorg. Khim. 53 (12), 2081–2097 (2008).

    CAS  Google Scholar 

  28. V. V. Shcherbakov, Yu. M. Artemkina, and T. N. Ponamareva, “Electrical conductivity of concentrated aqueous solutions of propanoic acid, sodium propionate, and their mixture,” Electrokhimiya 44 (10), 1275–1280 (2008).

    Google Scholar 

Download references

Funding

This work was carried out by the state task no. 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Kuznetsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, O.G., Levin, A.M., Tsybin, O.I. et al. Electrical Conductivity of Ammonium Perrhenate Solutions and the Calculation of Its Activation Energy. Russ. Metall. 2022, 990–995 (2022). https://doi.org/10.1134/S0036029522090087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522090087

Keywords:

Navigation