Skip to main content
Log in

Fusibility of the K2ZrF6–K2NbF7–KF–KCl System

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The fusibilities and liquidus temperatures of 10 compositions of the K2ZrF6–K2NbF7–KF–KCl quaternary system are determined in the component concentration ranges (mol %) 1.73–4.03 K2ZrF6, 2.33–4.55 K2NbF7, 48.62–65.37 KF, and 30.57–42.83 KCl. The studies are performed by differential thermal analysis on cooling. The dependence of the liquidus temperature on the molar ratios of the fluoride components of the molten phase is revealed. The compositions characterized by low molar ratios of potassium fluorozirconate to potassium fluoroniobate and simultaneously high molar ratios of potassium fluoride to the sum of zirconium and niobium salts have the lowest melting points. These ratios are 0.52–0.56 and 10.5–13.7, respectively. The liquidus temperatures of these compositions are in the range 854–873 K. High melting temperatures are characteristic of the melts that have the highest molar ratios of potassium fluorozirconate to potassium fluoroniobate and low molar ratios of potassium fluoride to the sum of the moles of zirconium and niobium salts. These ratios are 5.4–7.9 and 0.8–1.1, respectively. The liquidus temperatures of these compositions are 920–974 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. G. Nekhamkin, Metallurgy of Zirconium and Hafnium (Metallurgiya, Moscow, 1979).

    Google Scholar 

  2. L. P. Polyakova and P. T. Stangrit, “Homogeneity of zirconium–niobium alloys of various genesis,” in Chemistry, Chemical Technology, and Metallurgy of Rare Elements (Apatity, 1982), p. 135.

    Google Scholar 

  3. V. I. Konstantinov, Electrolytic Production of Tantalum, Niobium, and Their Alloys (Metallurgiya, Moscow, 1977).

    Google Scholar 

  4. G. W. Mellors and S. Senderoff, “Electrodeposition of coherent deposits of refractory metals. I. Niobium,” J. Electrochem. Soc. 112, 266–272 (1965).

    Article  Google Scholar 

  5. L. E. Ivanovskii and M. T. Krasil’nikov, “Electrode processes and the effect of oxygen during the electrolytic deposition of niobium from potassium fluoroniobate,” Trudy Inst. Elektrokhim. UFAN SSSR, No. 1, 49–54 (1960).

    Google Scholar 

  6. L. E. Ivanovskii and O. S. Petenev, “Some processes during the cathodic deposition of zirconium from chloride–fluoride melts,” Trudy Inst. Elektrokhim. UFAN SSSR, No. 2, 71–78 (1961).

    Google Scholar 

  7. K. P. Lebedeva and A. N. Baraboshkin, “Influence of electrolysis conditions on the structure of zirconium deposit. I. Electrolysis of chloride melts containing tetravalent zirconium,” Trudy Inst. Elektrokhim. UFAN SSSR, No. 6, 93–99 (1965).

    Google Scholar 

  8. K. P. Lebedeva and A. N. Baraboshkin, “Influence of electrolysis conditions on the structure of zirconium precipitation. II. Influence of fluorine ions on the structure of zirconium deposit,” Trudy Inst. Elektrokhim. UFAN SSSR, No. 6, 101–106 (1965).

    Google Scholar 

  9. A. N. Baraboshkin and K. P. Lebedeva, “Influence of electrolysis conditions on the structure of zirconium deposit,” Trudy Inst. Elektrokhim. UFAN SSSR, No. 7, 59–67 (1965).

    Google Scholar 

  10. V. A. Kotelevskii, F. V. Kovalev, L. E. Ivanovskii, Yu. U. Samson, F. N. Kozlov, and I. A. Baranov, “Production of niobium coatings by electrolysis of molten media,” Trudy Inst. Elektrokhim. UFAN SSSR, No. 21, 56–60 (1974).

    CAS  Google Scholar 

  11. K. I. Trifonov and V. I. Medvedev, “Fusibility of the salt mixtures containing zirconium and hafnium tetrachlorides and potassium tetrachloraluminate,” Rasplavy, No. 6, 87–89 (2006).

    Google Scholar 

  12. A. B. Salyulev, E. G. Vovkotrub, and V. N. Strekalovskii, “Interaction of zirconium and hafnium tetrachlorides with cesium, rubidium, and potassium chlorides and the Raman spectra of reaction products,” Rasplavy, No. 3, 45–49 (2008).

    Google Scholar 

  13. K. I. Trifonov, A. S. Larionov, V. E. Krotov, and A. F. Nikiforov, “Viscosity of the salt melts of the KAlCl4–ZrCl4–HfCl4 system,” Rasplavy, No. 2, 113–117 (2012).

    Google Scholar 

  14. A. Barhoun, Y. Berghoute, and F. Lantelme, “Electrodeposition of niobium from fluoroniobate K2NbF7 in fused NaCl–KCl,” J. Alloys Compd., 241–252 (1992).

  15. C. Decroly and R. Winand, “Électrodéposition en bain de sels fondus de poudres d’alliages zirconium–niobium,” J. Less Comm. Metals. 6, 132–151 (1964).

    Article  CAS  Google Scholar 

  16. A. Sheikh, R. Winand, and A. Fontana, “Production of zirconium metal by electrolysis in molten fluorides baths, the cell being fed by tablets of zirconium oxide and carbon,” J. Nucl. Mater. 39, 84–92 (1971).

    Article  CAS  Google Scholar 

  17. V. I. Konstantinov, E. G. Polyakov, and P. T. Stangrit, “Cathodic processes at electrolysis of chloride–fluoride and oxyfluoride melts of niobium,” Electrochim. Acta 26, 445–448 (1981).

    Article  CAS  Google Scholar 

  18. L. P. Polyakova and P. T. Stangrit, “Cathodic processes at electrolysis of chlorine and chloride–fluoride melts of zirconium,” Electrochim. Acta. 11, 1641–1645 (1992).

    Google Scholar 

  19. Z. Alimova, E. Polyacov, and V. Kremenetskiy, “The role of fluoride ions in reduction–oxidation equilibrium in CsCl–KCl–NaCl–K2NbF7 melts,” J. Fluorine Chem. 2, 203–209 (1992).

  20. V. Van, A. Silny, and V. Danek, “Electrochemical study of niobium fluoride and oxyfluoride complexes in molten LiF–KF–K2NbF7 bath,” Electrochem. Commun. 1, 295–300 (1999).

    Article  CAS  Google Scholar 

  21. D. Quaranta, L. Massot, M. Gibilaro, E. Mendes, J. Serp, and P. Chamelot, “Zirconium(IV) electrochemical behavior in molten LiF–NaF,” Electrochim. Acta. 265, 586–593 (2018).

    Article  CAS  Google Scholar 

  22. Ch. Li, Sh. Li, Y. Che, et al., “Electrochemical behavior of niobium ions in molten KCl–NaCl,” J. Mater. Res. Technol. 9, 9341–9347 (2020).

    Article  CAS  Google Scholar 

  23. S. F. Katyshev, V. N. Desyatnik, and L. M. Teslyuk, “Physicochemical properties of alkali metal and zirconium fluoride melts,” Tsvetn. Met., No. 8, 103–105 (2006).

  24. S. F. Katyshev, L. M. Teslyuk, N. N. Kurbatov, L. V. Semeikina, and A. V. Shchepin, “Properties of possible electrolytes for the production of metallic zirconium,” Vestn. UGTU-UPI. Teoriya Praktika Elektrokhim. Protsessov, No. 14, 98–103 (2004).

    Google Scholar 

  25. M. Chrenkova, V. Danielik, B. Kubikova, V. Daněk, “CALPHAD: phase diagram of the system LiF–NaF–K2NbF7,” Calphad 27 (1), 19–23 (2003).

    Article  CAS  Google Scholar 

  26. J. Mlynarikova, M. Boča, and L. Kipsova, “The role of the alkaline cations in the density and volume properties of the melts MF–K2NbF7 (MF = LiF–NaF, LiF–KF and NaF–KF),” J. Mol. Liq. 140 (1–3), 101–107 (2008).

  27. K. I. Trifonov and S. V. Afanas’ev, “Properties of the chlorination products of the waste of ferroniobium production,” in Proceedings of Congress on Fundamental Studies and Applied Development of Processing and Recycling of Technical Products (Yekaterinburg, 2017), pp. 348–349.

  28. K. I. Trifonov and G. N. Titov, “Influence of sodium chloride on the solidification temperature and electrical conductivity of the electrolyte for the electrolysis of zirconium,” in Proceedings of VII Kola Seminar on Electrochemistry of Rare and Nonferrous Metals (Apatity, 1992), p. 116.

  29. G. N. Titov, A. A. Red’kin, and P. I. Moskalenko, “Influence of the chloride–fluoride melt electrolysis conditions on the phase composition during the production of zirconium in industrial skull electrolyzers,” in Proceedings of VIII Kola Seminar on Electrochemistry of Rare Metals (Apatity, 1995), pp. 71–72.

  30. K. I. Trifonov, S. F. Katyshev, and A. F. Nikiforov, “Spent electrolyte of zirconium production as a raw material for producing zirconium–niobium alloys,” in Proceedings of Congress on Fundamental Investigations and Applied Development of the Processing and recycling of Technical Products (Yekaterinburg, 2017), pp. 347–348.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Krotov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonov, K.I., Krotov, V.E., Nikiforov, A.F. et al. Fusibility of the K2ZrF6–K2NbF7–KF–KCl System. Russ. Metall. 2022, 955–957 (2022). https://doi.org/10.1134/S0036029522080225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522080225

Navigation