Skip to main content
Log in

Thermodynamic Simulation and Experimental Investigation of the Calciothermic Reduction of Metals from Manganese and Iron Niobates

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The calciothermic reduction of metals from manganese (MnNb2O6) and iron (FeNb2O6) niobates, which are analogs of natural columbite (Fe, Mn)(Nb, Ta)2O6 contained in commercial rare metal ores, is studied. Thermodynamic simulation using the HSC Chemistry software package is used to calculate the change in the Gibbs free energy, the equilibrium constants, and the thermal effects of the interaction reactions of MnNb2O6, FeNb2O6, and Nb2O5 with calcium. The probability of formation of both niobium and its alloys with iron or manganese is found to be high. The changes in the equilibrium phase compositions of the oxide–calcium interaction products as functions of temperature (in the range 1000–2500°C) and the ratios of reagents are estimated. According to the calculations of the adiabatic temperature and the specific heat effect, the reduction of metals from FeNb2O6 is feasible under “out-of-furnace” process conditions, and the reduction from MnNb2O6 would require preheating a charge to 600–800°C. During continuous heating up to 1200°C, the temperatures of the thermal effects related to reagent transformations and phase formation in the interaction products are detected by combined thermogravimetry and differential thermal analysis. The complete reduction of manganese and iron niobates is found to occur with the participation of molten calcium at a molar niobate/calcium ratio of 6 with the formation of metallic niobium and its intermetallic compounds, NbMn2 or FeNb, respectively. At excess reducing agent, solid-phase products hinder the diffusion of the calcium melt to the reaction surface, which slows down the completion of the process and promotes the development of secondary interactions between intermediate oxides (NbO, Mn0.95O, Mn2.907O4) and calcium oxide. To complete the reduction process, it is necessary to increase the temperature or the heating time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. S. Kumar, T. Balaji, S. R. Kumar, A. Kumar, and T. L. Prakash, “Issues and challenges in the preparation of niobium for strategic applications,” Int. J. Chem. Stud. 1 (2), 86–89 (2013).

    Google Scholar 

  2. C. K. Guptha and P. K. Jena, “Preparation of niobium (columbium) pentoxide,” Trans. TME-AIME 230, 1433–1438 (1964).

    Google Scholar 

  3. J. C. Sehra, D. K. Bose, and P. K. Jena, “Preparation of niobium and tantalum metal powders by calciothermic reduction of their pentoxides,” Trans. Ind. Inst. Met. 21 (1), 21–23 (1968).

    CAS  Google Scholar 

  4. M. W. D. Mendes, A. C. P. Santos, F. F. P. Medeiros, C. Alves, A. G. P. Da Silva, and U. U. Gomes, “Aluminothermic reduction of niobium pentoxide in a hydrogen plasma furnace,” Mater. Sci. Forum 514–516, 599–603 (2006).

  5. C. A. Nunes, D. G. Pinatti, and A. Robin, “Nb–Ta alloys by aluminothermic reduction of Nb2O5/Ta2O5 mixtures and electron beam melting,” Int. J. Refract. Met. Hard Mater. 17 (4), 305–314 (1999).

    Article  CAS  Google Scholar 

  6. C. P. D. Lazzari, O. M. Cintho, and J. D. T. Capocchi, “Kinetics of the non-isothermal reduction of Nb2O5 with aluminum,” ISIJ Int. 45 (1), 19–22 (2005).

    Article  Google Scholar 

  7. T. V. Osinkina, S. A. Krasikov, E. M. Zhilina, S. N. Agafonov, L. B. Vedmid, and S. V. Zhidovinova, “Influence of niobium and tantalum on the phase formation during the metallothermic interaction of aluminum with titanium dioxide,” Rasplavy, No. 5, 554–561 (2018).

    Google Scholar 

  8. O. H. Toru, S. Iwata, M. Imagunbai, and M. Maeda, “Production of niobium powder by preform reduction process using various fluxes and alloy reductant,” ISIJ Int. 44 (2), 285–293 (2004).

    Article  Google Scholar 

  9. T. S. Kumar, S. R. Kumar, M. L. Rao, and T. L. Prakash, “Preparation of niobium metal powder by two stage magnesium vapor reduction of niobium pentoxide,” J. Metallurgy 2013, 1–6 (2013).

    Google Scholar 

  10. T. Izumi, “Processing of metallic material prospect to the next generation. Powder production prospect of tantalum and niobium,” Kinzoku (Met. Sci. Technol.) 69 (10), 875–880 (1999).

  11. I. Park, T. H. Okabe, Y. Waseda, H. S. Yu, and O. Y. Lee, “Semi-continuous production of niobium powder by magnesiothermic reduction of Nb2O5,” Mater. Trans. 42 (5), 850–855 (2001).

    Article  CAS  Google Scholar 

  12. T. H. Okabe, S. Iwata, M. Imagunbai, and M. Maeda, “Production of niobium powder by magnesiothermic reduction of feed preform,” ISIJ Int. 43 (12), 1882–1889 (2003).

    Article  CAS  Google Scholar 

  13. M. Baba, T. Kikuchi, and R. O. Suzuki, “Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors,” J. Phys. Chem. Solids. 78, 101–109 (2015).

    Article  CAS  Google Scholar 

  14. M. Baba, Y. Ono, and R. O. Suzuki, J. Phys. Chem. Solids. 66 (2–4), 466–470 (2005). https://doi.org/10.1016/jjpcs.2004.06.042

  15. R. O. Suzuki, M. Aizawa, and K. Ono, J. Alloys Compd. 288 (1–2), 173–182 (1999). https://doi.org/10.1016/S0925-8388(99)00116-4

  16. T. H. Okabe, H. Park, K. T. Jacob, and Y. Waseda, J. Alloys Compd. 288, 200–210 (1999). https://doi.org/10.1016/S0925-8388(99)00130-9

    Article  CAS  Google Scholar 

  17. A. V. Kasimtsev, Yu. V. Levinsky, and S. N. Yudin, Tsvetn. Met., No. 1, 47–57 (2021). https://doi.org/10.r7580/tsm.2021.01.05

  18. V. M. Orlov and M. V. Kryzhanov, Neorg. Mater. 56 (7), 774–779 (2020). https://doi.org/10.31857/S0002337X2007012X

    Article  Google Scholar 

  19. V. M. Orlov and M. V. Kryzhanov, Neorg. Mater. 57 (1), 33–40 (2021). https://doi.org/10.31857/S0002337X20120131

    Article  Google Scholar 

  20. A. N. Mansurova, V. M. Chumarev, L. I. Leontiev, R. I. Gulyaeva, and N. I. Selmenskikh, “Phase transformations during the interaction of Nb2O5 and FeNb2O6 with aluminum,” Metally, No. 6, 15–21 (2012).

    Google Scholar 

  21. A. Roine, HSC 6.0 Chemistry. Chemical Reactions and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation (Outokumpu Research Oy, Pori, 2006).

    Google Scholar 

  22. A. N. Mansurova, R. I. Gulyaeva, V. M. Chumarev, and V. P. Mar’evich, “Thermochemical properties of MnNb2O6,” J. Therm. Anal. Calorim. 101 (1), 45–47 (2010).

    Article  CAS  Google Scholar 

  23. C. He, Y. Qin, and F. Stein, J. Phase Equilib. Diffus. 38, 771–787 (2017). https://doi.org/10.1007/s11669-017-0566-3

    Article  CAS  Google Scholar 

  24. S. Liu, B. Hallstedt, D. Music, and Y. Du, Calphad 38, 43–58 (2012). https://doi.org/10.1016/j.calphad.2012.03.004

    Article  CAS  Google Scholar 

  25. A. N. Mansurova, R. I. Gulyaeva, V. M. Chumarev, and S. A. Petrova, J. Alloys Compd. 695, 2483–2487 (2017). https://doi.org/10.1016/JJALLCOM.2016.11.148

    Article  CAS  Google Scholar 

  26. Powder Diffraction File PDF4 + ICDD Release (2016).

  27. H. M. Rietveld, J. Appl. Crystallogr., No. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

  28. DIFFRAC Plus : TOPAS Bruker AXS GmbH, Ostliche. Rheinbruckenstrafie 50, D-76187 (Karlsruhe, 2008).

  29. V. A. Podergin, Metallothermic Systems (Metallurgiya, Moscow, 1972).

    Google Scholar 

  30. H. A. Wriedt, “The Ca–O (Calcium–Oxygen) System,” Bull. Alloy Phase Diagrams 6 (4), 337–342 (1985).

    Article  CAS  Google Scholar 

  31. V. V. Rodyakin, Calcium, Its Compounds and Alloys (Metallurgiya, Moscow, 1967).

    Google Scholar 

  32. X. Yan, P. Brož, J. Vřeštál, et al., J Alloys Compd. 865, 158715 (2021). https://doi.org/10.1016/jjallcom.2021.158715

    Article  CAS  Google Scholar 

  33. A.R. Massive and R. J. Pérez, “Thermodynamic evaluation of the Nb–O system,” Quantum Technol. AB 2, 1–31 (2006).

  34. E. Paul and L. J. Schwarzendruber, Byull. Alloy Phase Diagrams 7 (3), 248–254 (1986). https://doi.org/10.1007/BF02869000

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-24051_mk) and was performed on the equipment of the Center for Collective Use URAL-M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Sergeeva or R. I. Gulyaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeeva, S.V., Gulyaeva, R.I., Udoeva, L.Y. et al. Thermodynamic Simulation and Experimental Investigation of the Calciothermic Reduction of Metals from Manganese and Iron Niobates. Russ. Metall. 2022, 909–918 (2022). https://doi.org/10.1134/S0036029522080146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522080146

Keywords:

Navigation