Skip to main content
Log in

Mechanical Behavior of a Copper–Aluminum Clad Composite Material during Rotary Forging

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The copper/aluminum alloy and copper/steel/aluminum alloy composites fabricated by rotary forging at room temperature are studied. An analysis of the calculated forging reduction ratios of the components indicates a complex process of deformation of composite workpieces during forging from an initial diameter of 20 mm to a final diameter of 2.5 mm. Rotary forging leads to significant hardening of both the copper shell and the aluminum rod and to the appearance of a nonuniform microhardness distribution in the cross section of the samples, which levels off with increasing reduction. The mechanical properties of both composites are comparable after forging to a diameter of 5 mm: the yield strength and the ultimate tensile strength are 355–370 and 390–395 MPa, respectively, at a relative elongation of 2–3%. A consistent decrease in the sample diameter to 2.9 mm does not cause a noticeable change in the strength properties of the composites and decreases the ductility of the copper/steel/aluminum alloy composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I.-K. Kim and S. I. Hong, “Influence of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates,” Mater. Design. 47, 590–598 (2013).

    Article  CAS  Google Scholar 

  2. N. Ahmed, “Extrusion of copper clad aluminum wire,” J. Mech. Process. Technol. 2, 19–32 (1978).

    CAS  Google Scholar 

  3. Y. Mitani and H. Balmori, “Fabrication of a Cu–Al composite wire and its mechanical properties (Part I),” in Proceedings of 6th International Conference Strength of Metals and Alloys—ICSMA 6 (Melbourne, 1982), pp. 983–988.

  4. Y. Beygelzimer, Y. Estrin, and R. Kulagin, “Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing,” Adv. Eng. Mater. 17, 1853–1861 (2015).

    Article  CAS  Google Scholar 

  5. O. Bouaziz, H. S. Kim, and Y. Estrin, “Architecturing of metal-based composites with concurrent nanostructuring: a new paradigm of materials design,” Adv. Eng. Mater. 15, 336–340 (2013).

    Article  CAS  Google Scholar 

  6. R. Kulagin, Y. Beygelzimer, A. Bachmaier, R. Pippan, and Y. Estrin, “Benefits of pattern formation by severe plastic deformation,” Appl. Mater. Today 15, 236–241 (2019).

    Article  Google Scholar 

  7. B. Huang, K. Ishihara, and P. Shingu, “Bulk nano-scale Fe/Cu multilayers produced by repeated pressing–rolling and their magnetoresistance,” J. Mater. Sci. Lett. 19, 1763–1765 (2000).

    Article  CAS  Google Scholar 

  8. V. N. Danilenko, S. N. Sergeev, J. A. Baimova, G. F. Korznikova, K. S. Nazarov, R. Kh. Khisamov, A. M. Glezer, and R. R. Mulyukov, “An approach for fabrication of Al–Cu composite by high pressure torsion,” Mater. Lett. 236, 51–55 (2019).

    Article  CAS  Google Scholar 

  9. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progr. Mater. Sci. 45, 103–189 (2000).

    Article  CAS  Google Scholar 

  10. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Fundamentals of superior properties in bulk nanoSPD materials,” Mater. Res. Lett. 4, 1–21 (2016).

    Article  CAS  Google Scholar 

  11. Y. Estrin and M. J. Zehetbauer, “Niche applications of bulk nanostructured materials processed by severe plastic deformation,” in Bulk Nanostructured Materials, Ed. by M. J. Zehetbauer and Y. T. Zhu (Wiley, Weinheim, 2009), pp. 635–648.

    Google Scholar 

  12. V. A. Andreev, V. S. Yusupov, M. M. Perkas, V. V. Prosvirnin, A. E. Shelest, S. D. Prokoshkin, I. Yu. Khme-levskaya, A. V. Korotitskii, S. A. Bondareva, and R. D. Karelin, “Mechanical and functional properties of commercial alloy TN-1 semiproducts fabricated by warm rotary forging and ECAP,” Russ. Metall. (Metally), No. 10, 890–894 (2017).

  13. S. A. Nikulin, V. A. Kotrekhov, A. B. Rozhnov, V. M. Khatkevich, S. O. Rogachev, and A. S. Zavodchikov, “Mechanical properties and character of fracture of a tube billet made of an E110 zirconium alloy after radial forging at various strains,” Deform. Razrushenie Mater., No. 2, 36–42 (2012).

  14. S. A. Nikulin, T. A. Nechaikina, A. B. Rozhnov, S. O. Rogachev, and V. Yu. Turilina, “Structure and mechanical properties of a three-layer material steel/vanadium alloy/steel after radial forging,” Metalloved. Term. Obrab. Met., No. 4, 28–34 (2018).

  15. S. O. Rogachev, V. A. Andreev, V. S. Yusupov, V. M. Khatkevich, E. V. Nikolaev, M. M. Perkas, and S. A. Bondareva, “Structure and mechanical properties of bimetallic aluminum alloy/copper wires after rotary forging” Metalloved. Term. Obrab. Met., No. 12, 26–31 (2020).

  16. R. Kocich, L. Kunčická, P. Král, and P. Strunz, “Characterization of innovative rotary swaged Cu–Al clad composite wire condoctors,” Mater. Design. 160, 828–835 (2018).

    Article  CAS  Google Scholar 

  17. R. Kocich, A. Macháčková, L. Kunčická, and F. Fojtík, “Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites,” Mater. Design. 71, 36–47 (2015).

    Article  CAS  Google Scholar 

  18. Y. L. Wang, R. Lapovok, J. T. Wang, Y. S. Qi, and Yu. Estrin, “Thermal behavior of copper processed by ECAP with and without back pressure,” Mater. Sci. Eng. A 628, 21–29 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank engineer A.A. Tokar’ for his assistance on the sample preparation.

Funding

This work was supported by the Russian Foundation for Basic Research and the Government of Moscow within the framework of scientific project no. 21-32-70015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Rogachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachev, S.O., Sundeev, R.V., Andreev, V.A. et al. Mechanical Behavior of a Copper–Aluminum Clad Composite Material during Rotary Forging. Russ. Metall. 2022, 332–338 (2022). https://doi.org/10.1134/S0036029522040231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522040231

Keywords:

Navigation