Skip to main content
Log in

Effect of Alloying Elements on the Strength Properties of Nickel Superalloys for Gas Turbine Disks

  • QUALITY, CERTIFICATION, AND COMPETITIVE ABILITY OF METAL PRODUCTS
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

More than 150 industrial and experimental nickel superalloys are analyzed to construct analytical composition–property relationships for materials with equiaxed (disk) and single-crystal structures. These relationships are used to analyze the influence of alloying elements on the strength characteristics of these groups of materials. The analysis results are used to create a new high-temperature alloy SDZhS-15 for gas turbine disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. V. Logunov, Nickel Superalloys for Gas Turbine Blades and Disks (Gazoturbinnye Tekhnologii, Rybinsk, 2017).

    Google Scholar 

  2. Yu. N. Shmotin, “Experience of application and main directions of development of numerical methods in OAO NPO Saturn,” Vestn. RGATA, No. 1, 2 (7– 8), 59–69 (2005).

  3. A. V. Logunov, D. V. Danilov, and R. V. Khramin, “High-strength nickel-based alloy SLGS-5 for operation in active marine salt corrosion environment,” Mater. Today: Proceedings 11, 453–458 (2018). http://www.sciencedirect.com.

  4. S. A. Zavodov, A. V. Logunov, and D. V. Danilov, “Mathematical modeling of the complex effect of alloying elements on the properties of high-temperature disk alloys for gas turbines,” Vestn. RGATU, No. 3 (46), 98–103 (2018).

    Google Scholar 

  5. A. V. Logunov, Yu. N. Shmotin, and D. V. Danilov, “Methodological foundations of computer-aided design of high-temperature nickel-based alloys. Part 1,” Tekhnol. Met., No. 5, 3–9 (2014).

  6. A. V. Logunov, Yu. N. Shmotin, and D. V. Danilov, “Methodological foundations of computer-aided design of high-temperature nickel-based alloys. Part 2,” Tekhnol. Met., No. 6, 3–10 (2014).

  7. A. V. Logunov, Yu. N. Shmotin, and D. V. Danilov, “Methodological foundations of computer-aided design of high-temperature nickel-based alloys. Part 1,” Tekhnol. Met., No. 7, 3–11 (2014).

  8. V. V. Sidorov, G. I. Morozova, E. A. Kuleshova, et al., “Phase composition and thermal stability of a cast nickel superalloy with silicon,” Izv. Akad. Nauk SSSR, Ser. Mat., No. 1, 94–98 (1990).

  9. G. V. Estulin and T. V. Svistunova, “Influence of rhenium and iridium on the properties of a precipitation-hardening KhN77TYu alloy (Ni–Cr–Ti–Al system),” in Studies of Steels and Alloys (Nauka, Moscow, 1967), pp. 194–198.

    Google Scholar 

  10. A. V. Logunov, Yu. N. Shmotin, D. V. Danilov, et al., “Development and study of a new nickel superalloy for of gas turbine engine and unit disks,” Dvigatel’, No. 4 (112), 10–12 (2017).

  11. R. V. Khramin, A. V. Logunov, S. A. Zavodov, et al., “Deformable high-temperature nickel-based alloy,” RF Patent 2695097, 2019.

  12. M. M. Bakradze, A. V. Skugorev, M. V. Bubnov, A. S. Perevozov, et al., “Development of technology for producing gas turbine engine disk workpieces from a new granulated high-temperature VZh178P alloy by HIP + deformation,” Tekhnol. Legkikh Splavov, No. 3, 21–24 (2018).

    Google Scholar 

  13. B. S. Lomberg, S. V. Ovsepyan, and M. M. Barkadze, “Alloying and heat treatment of nickel superalloys for next-generation gas turbine engine disks,” Aviats. Mater. Tekhnol., No. 2, 3–8 (2010).

  14. B. S. Lomberg, S. V. Ovsepyan, and M. M. Barkadze, “New high-temperature nickel alloy for gas turbine engine and unit disks,” Materialoved., No. 7, 24–28 (2010).

  15. G. S. Garibov, N. M. Grits, A. V. Vostrikov, and E. A. Fedorenko, “Development of new granular nickel superalloys for the production of aircraft engine disks and shafts,” Tekhnol. Legkikh Splavov, No. 2, 34–43 (2010).

    Google Scholar 

  16. G. S. Garibov, A. V. Vostrikov, N. M. Grits, et al., “Powder nickel superalloy,” RF Patent 2368 683, 2009.

  17. G. S. Garibov, N. M. Grits, A. V. Vostrikov, and E. A. Fedorenko, “Creation of a new high-strength VV751P alloy for advanced gas turbine engines,” Tekhnol. Legkikh Splavov, No. 1, 34–39 (2009).

    Google Scholar 

  18. G. S. Garibov, “New PM Superalloys for Commercial and Military Engines,” in Proceedings of International Techno-Business Conference on the Superalloys Industry “Superalloys for Gas Turbine” (Tampa, 1998), pp. 5–23.

  19. G. S. Garibov, N. M. Grits, A. V. Vostrikov, and E. A. Fedorenko, “Evolution of the technology, structure, and mechanical properties of granulated high-temperature HIP nickel alloys,” Tekhnol. Legkikh Splavov, No. 3, 31–35 (2010).

    Google Scholar 

  20. G. S. Garibov, N. M. Grits, A. V. Vostrikov, and E. A. Fedorenko, “Development and study of a new granulated high-strength high-temperature VV752P nickel alloy for advanced aircraft products,” Tekhnol. Legkikh Splavov, No. 1, 7–11 (2011).

    Google Scholar 

  21. G. S. Garibov, N. M. Grits, and A. V. Vostrikov, “Powder nickel superalloy,” RF Patent 2371495, 2009.

  22. G. S. Garibov, N. M. Grits, and A. A. Inozemtsev, “High-temperature nickel-based powder alloy,” RF Patent 2410457, 2011.

  23. G. S. Garibov, “Modern level of development of powder metallurgy of nickel superalloys,” Tekhnol. Legkikh Splavov, No. 6, 58–69 (2000).

    Google Scholar 

  24. O. I. Samoilov, T. A. Alekseeva, and I. A. Burlakov, “Structure of powder nickel alloys,” Tekhnol. Met., No. 6, 37–42 (2004).

  25. O. Kh. Fatkullin, V. I. Eremenko, O. N. Vlasova, and N. M. Grits, “Increase of the mechanical properties of granulated nickel superalloys due to alloying and forming,” Tekhnol. Legkikh Splavov, Nos. 5, 6, 149–155 (2001).

    Google Scholar 

  26. G. S. Garibov, Yu. S. Eliseev, and E. I. Gol’dinskii, “Potential of metallurgy of granules,” Natsion. Metallurg., No. 1, pp. 7, 34–40 (2001).

    Google Scholar 

  27. B. S. Lomberg, S. V. Ovsepyan, and V. B. Latyshev, “Modern deformable high-temperature alloys,” in Scientific Ideas of S.T. Kishkin and Modern Materials Science (Izd. VIAM, Moscow, 2006), pp. 75–84.

    Google Scholar 

  28. J. D. Verin, “Microstructure and properties of high-temperature alloys. Overheating resistance of alloys,” in High-Temperature Alloys, Ed. by Ch. Sims and V. Hagel (Metallurgiya, Moscow, 1976), pp. 217–240.

    Google Scholar 

  29. J. Y. Guedou, J. C. Lautridou, and Y. Honnorat, “P/M superalloy for disk: development and applications,” in Superalloys (Snecma: Materials and Processes Department, 1992), pp. 267–276.

  30. D. Rice, P. Kantzos, B. Hann, et al., “P/M alloy 10—a 700°C capable nickel-based superalloy for turbine disk applications,” in Proceedings of Eleventh International Symposium Superalloys-2008 (TMS, Champion, 2008), pp. 139–147. https://doi.org/10.7449/2008/superalloys_2008_139_147

  31. M. Howard, B. C. Raymond, and B. Prabir, “High strength powder metallurgy nickel base alloy,” US Patent 6468368, 2002.

  32. Y. Gu, C. Cui, H. Harada, et al., “Development of Ni–Co-base alloys for high-temperature disk applications,” in Proceedings of Eleventh International Symposium Superalloys-2008 (TMS, Champion, 2008), pp. 53–62.

  33. M. O. Lavitt, “Spray forming could cut engine components cost,” Aviation Week & Space Techn., No 11, 102–103 (1997).

  34. E. S. Huron, K. R. Bain, D. P. Mourer, T. P. Gabb, and I. Bossi, “Development of high temperature capability PM disk superalloys,” in Proceedings of Eleventh International Symposium Superalloys-2008 (TMS, Champion, 2008), pp. 181–190.

  35. J. Gayada and T. P. Gabb, Fatigue Behavior of a Third Generation PM Disk Superalloy (NASA-TM, 2008). https://archive.org/details/NASA_NTRS_Archive_ 20080045886.

  36. G. Ts. Gat’, “Base of development and research of materials in China,” Tekhnol. Legkikh Splavov, Nos. 5, 6, 11–15 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Logunov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logunov, A.V., Shmotin, Y.N., Khramin, R.V. et al. Effect of Alloying Elements on the Strength Properties of Nickel Superalloys for Gas Turbine Disks. Russ. Metall. 2021, 1604–1611 (2021). https://doi.org/10.1134/S0036029521120144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521120144

Keywords:

Navigation