Skip to main content
Log in

Universal Character of the Deformation Behavior of Polymeric Foams

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The factors determining the mechanical properties of plastic polymeric foams are systematized. A unification procedure for their deformation behavior in the range of strains not higher than the forced elasticity limit of the material is proposed. The universal character of the deformation process is described by a unified strain curve and ratios of the main mechanical characteristics of the material, which are independent of the chemical nature of the polymer, the structural parameters of the foam, and the temperature–rate deformation conditions. The deformation behavior of monolithic and foam plastics and inorganic plastic bodies is shown to be similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. Klempner and V. Sendijarevic, Polymeric Foams and Foam Technology, 2nd ed. (Carl Hanser Verlag, Munich, 2004).

    Google Scholar 

  2. Handbook of Plastic Foams, Ed. by A. H. Landrock (Noyes Publications, New Jersey, 1995).

    Google Scholar 

  3. M. Szycher, Szycher’s Handbook of Polyurethanes (CRC Press, Boca Raton, 2012).

    Book  Google Scholar 

  4. D. Exerowa, G. Gochev, D. Platikanov, L. Liggieri, and R. Mollier, Foam Films and Foams. Fundamentals and Applications (CRC Press, Boca Raton, 2019).

    Google Scholar 

  5. Polymeric Foams. Mechanisms and Materials, Ed. by S. T. Lee and N.S. Ramesh (CRC Press, Boca Raton, 2004).

    Google Scholar 

  6. K. Ashida, Polyurethane and Related Foams. Chemistry and Technology (CRC Press, Boca Raton, 2017).

    Google Scholar 

  7. H. Jin, S. Scheffel, T. D. Hinnerichs, and M. K. Neilsen, “Full-field characterization of mechanical behavior of polyurethane foams,” Int. J. Sol. Struct. 44, 6930–6944 (2007).

    Article  CAS  Google Scholar 

  8. U. Stirna, I. Beverte, V. Yakushin, and U. Cabulis, “Mechanical properties of rigid polyurethane foams at room and cryogenic temperatures,” J. Cell. Plastics 47 (4), 335–337 (2011).

    Article  Google Scholar 

  9. I. Beverte, “An experimental method for the investigation of rigid polyurethane foams in shear,” J. Cell. Plastics 54 (5), 851–884 (2018).

    Article  CAS  Google Scholar 

  10. M. Antunes, V. Realinho, M. Ardanuy, M. Maspoch, and J. Velasco, “Mechanical properties and morphology of multifunctional polypropylene foams,” J. Cell. Plastics 47 (4), 187–200 (2011).

    Article  Google Scholar 

  11. L. Andena, F. Caimmi, L. Leonardi, M. Nacucchi, and F. De Pascalis, “Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study,” J. Cell. Plastics 55 (6), 49–72 (2018).

    Article  Google Scholar 

  12. W.-Y. Jang, A. M. Kraynik, and S. Kyriakides, “On the microstructure of open-cell foams and its effect on the elastic properties,” Int. J. Sol. Struct. 45, 1845–1875 (2008).

    Article  Google Scholar 

  13. D. K. Chattopadhyay and K. V. S. N. Raju, “Structural engineering of polyurethane coatings for high performance applications,” Progr. Polym. Sci. 32, 352–418 (2007).

    Article  CAS  Google Scholar 

  14. M. S. Arzhakov, P. P. Yakovlev, and A. I. Lopatkin, “Effect of the composition of a polyisocyanate–polyester–foaming agent mixture on the properties of polyurethane foams,” Russ. Metall. (Metally), No. 4, 441–444 (2020).

  15. W.-Y. Lu, Mechanical Characterization of Rigid Polyurethane Foams (Sandia National Laboratories, New Mexico, 2014).

    Book  Google Scholar 

  16. M. Arzhakov, Relaxation in Physical and Mechanical Behavior of Polymers (CRC Press, Boca Raton, 2019).

    Book  Google Scholar 

  17. M. S. Arzhakov, M. V. Anakov, A. E. Zhirnov, G. M. Lukovkin, and S. A. Arzhakov, An Introduction in Unified Analysis of Physical Properties of Substances and Materials (Accent Graphics Communications, Montreal, 2017).

    Google Scholar 

  18. S. B. Ratner and V. P. Yartsev, Physical Mechanics of Plastics (Khimiya, Moscow, 1992).

    Google Scholar 

  19. A. A. Berlin, O. V. Gendelman, M. A. Mazo, L. I. Manevich, and N. N. Sinelnikov, “On solid-liquid transition in plane disc systems,” J. Phys.: Condens. Matter 11, 4583–4596 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Arzhakov.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhakov, M.S., Yakovlev, P.P. & Lopatkin, A.I. Universal Character of the Deformation Behavior of Polymeric Foams. Russ. Metall. 2021, 454–458 (2021). https://doi.org/10.1134/S0036029521040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040042

Keywords:

Navigation