Skip to main content
Log in

Phase Equilibria in the Liquid Steel Deoxidized with Aluminum and Calcium in the Presence of Magnesium

  • THEORY OF METALLURGICAL PROCESSES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The concentration regions of the phase equilibria of the components in a metallic Fe–Mg–Al–Ca–C–O melt at a temperature of 1600°C have been calculated and built for low-, medium-, and high-carbon steels by simulating the solubility surfaces of the components in a metal. The conditions of formation of calcium aluminate inclusions in the system are determined. Carbon is shown to influence the sequence of phase formation with the participation of strong deoxidizers, such as calcium, magnesium, and aluminum. The liquid metal is found to contain composition regions in equilibrium with a gaseous CO-based phase or a gaseous phase based on calcium and magnesium vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. A. Gokcen and J. Chipman, “Aluminum–oxygen equilibrium in liquid iron,” Trans. AIME 197, 173–178 (1953).

    Google Scholar 

  2. D. Janke and W. A. Fischer, “Desoxidationsgleichgewichte von titan, aluminum und zirconium in eisenschmelzen bei 1600°C,” Arch. Eisenhüttenwes 47 (4), 195–198 (1976).

    Article  CAS  Google Scholar 

  3. M. K. Paek, J. M. Jang, Y. B. Kang, et al., “Aluminum deoxidation equilibria in liquid iron: part I. Experimental,” Metall. Mater. Trans. B. 46 (4), 1826–1836 (2015). https://doi.org/10.1007/s11663-015-0368-0

    Article  CAS  Google Scholar 

  4. K. Mineura, I. Takahashi, and K. Tanaka, “Deoxidation and desulfurization of pressurized liquid high nitrogen stainless steels with calcium,” ISIJ Intern. 30 (3), 192–198 (1990). https://doi.org/10.2355/isijinternational.30.192

    Article  CAS  Google Scholar 

  5. K. Taguchi, H. Ono-Nakazato, D. Nakai, et al., “Deoxidation and desulfurization equilibria of liquid iron by calcium,” ISIJ Intern. 43 (11), 1705–1709 (2003). https://doi.org/10.2355/isijinternational.43.1705

  6. H. Fujiwara, M. Tano, K. Yamamoto, et al., “Solubility and activity of calcium in molten iron in equilibrium with lime and thermodynamics of calcium containing iron melts.” ISIJ Intern. 35 (9), 1063–1071 (1995). https://doi.org/10.2355/isijinternational.35.1063

    Article  CAS  Google Scholar 

  7. M. Imagumbai and T. Takeda, “Influence of calcium treatment on sulfide- and oxide-inclusions in continuous-cast slab of clean steel—dendrite structure and inclusions,” ISIJ Intern. 34 (7), 574–583 (1994). https://doi.org/10.2355/isijinternational.34.574

    Article  CAS  Google Scholar 

  8. K. Taguchi, H. Ono-Nakazato, T. Usui, et al., “Complex deoxidation equilibria of molten iron by aluminum and calcium, ISIJ Intern. 45 (11), 1572–1576 (2005). https://doi.org/10.2355/isijinternational.45.1572

    Article  CAS  Google Scholar 

  9. Y. Higuchi, M. Numata, S. Fukagawa, et al., “Inclusion modification by calcium treatment,” ISIJ Intern. 36 (S), S151–S154 (1996). https://doi.org/10.2355/isijinternational.36.Suppl_S151

  10. G. M. Faulring and S. Ramalingam, “Inclusion precipitation diagram for the Fe–O–Ca–Al system,” Metall. Trans. B. 11 (1), 125–130 (1980). https://doi.org/10.1007/BF02657.181

    Article  Google Scholar 

  11. E. Kh. Shakhpazov, A. I. Zaitsev, N. G. Shaposhnikov, I. G. Rodionova, and N. A. Rybkin, “Physicochemical prediction of the types of nonmetallic inclusions. Complex deoxidation of steel with aluminum and calcium,” Russ. Metall. (Metally), No. 2, 99–107 (2006).

  12. A. B. Akhmetov, G. D. Kusainova, A. A. Kuszhanova, et al., “Effect of calcium modification on the Hadfield steel structure and the morphology of nonmetallic inclusions formed in it,” Elektrometallurgiya, No. 3, 8–12 (2017).

    Google Scholar 

  13. V. I. Zhalybin and G. S. Ershov, “On recovery of liner magnesium during smelting aluminum-alloyed steel,” Izv. Akad. Nauk SSSR, Ser. Met., No. 1, 49–53 (1966).

  14. V. I. Zhuchkov, S. V. Lukin, and I. V. Shilina, “Deoxidation of steel with calcium–magnesium–silicon ferroalloys,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 12, 69–71 (1977).

  15. G. G. Mikhailov, B. I. Leonovich, and Yu. S. Kuznetsov, Thermodynamics of Metallurgical Processes and Systems (MISiS, Moscow, 2009).

  16. Y. Du, J. R. Zhao, C. Zhang, et al., “Thermodynamic simulation in the Fe–Mg–Si System,” J. Min. Metall. Sect. B. 43 (1), 39–56 (2007). https://doi.org/10.2298/JMMBo701039D

    Article  CAS  Google Scholar 

  17. M. Berg, J. Lee, and D. Sichen, “Study on the equilibrium between liquid iron and calcium vapor,” Metall. Mater. Trans. B. 48 (3), 1715–1720 (2017). https://doi.org/10.1007/s11663-017-0946-4

    Article  CAS  Google Scholar 

  18. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry (Pergamon, Oxford, 1979).

    Google Scholar 

  19. H. A. Wriedt, “The Ca–O (calcium–oxygen) system,” Bull. Alloy Phase Diagr. 6 (4), 337–342 (1985). https://doi.org/10.1007/BF02880517

    Article  CAS  Google Scholar 

  20. P. Wu, G. Eriksson, A. D. Pelton, et al., “Prediction of the thermodynamic properties and phase diagrams of silicate systems: evaluation of the FeO–MgO–SiO2 system,” ISIJ Intern. 33 (1), 26–35 (1993). https://doi.org/10.2355/isijinternational.33.26

    Article  CAS  Google Scholar 

  21. Slag Atlas, Ed. by V. D. Eisenhüttenleute (Stahleisen, Düsseldorf, 1995).

    Google Scholar 

  22. A. Ono, “Fe–Mg partitioning between spinel and olivine,” J. Japan Assoc. Min. Petr. Econ. Geol. 78, 115–122 (1983).

    Article  CAS  Google Scholar 

  23. G. G. Mikhailov, L. A. Makrovets, and L. A. Smirnov, “Thermodynamic simulation of the interaction processes of lanthanum with components of iron-base metallic melts,” Izv. Vyssh. Uchebn. Zaved., Chern. Met. 58 (12), 877–883 (2015).

    CAS  Google Scholar 

  24. G. G. Mikhailov and D. A. Zherebtsov, “On the interaction of calcium and oxygen in liquid iron,” Mater. Sci. Forum 843, 52–61 (2016). doi: 10.4028/www.scientific.net/MSF.843.52

  25. T. Fuwa and J. Chipman, “The carbon–oxygen equilibria in liquid iron,” Trans. AIME 218, 887–891 (1960).

    CAS  Google Scholar 

  26. N. Satoh, T. Taniguchi, S. Mishima, et al., “Prediction of nonmetallic inclusion formation in Fe–40 mass % Ni–5 mass % Cr alloy production process,” Tetsu-to-Hagané 95 (12), 827–836 (2009).

  27. J. H. Park and H. Todoroki, “Control of MgO ⋅ Al2O3 spinel inclusions in stainless steels,” ISIJ Intern. 50 (10), 1333–1346 (2010). https://doi.org/10.2355/isijinternational.50.1333

    Article  CAS  Google Scholar 

  28. H. Itoh, M. Hino, and S. Ban-Ya, “Thermodynamics on the formation of non-metallic inclusion of spinel (MgO ⋅ Al2O3) in liquid steel,” Tetsu-to-Hagané 84 (2), 85–90 (1998).

  29. Steelmaking Data Sourcebook. Japan Society for the Promotion of Science. The 19th Committee on Steelmaking (Gordon & Breach, New York, 1988).

  30. L. J. Wang, Y. Q. Liu, Q. Wang, et al., “Evolution mechanisms of MgO ⋅ Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway,” ISIJ Intern. 55 (5), 970–975 (2015).

    Article  CAS  Google Scholar 

  31. H. Prox, M. Hino, and S. Ban-Ya, “Assessment of Al deoxidation equilibrium in liquid iron.” Tetsu-to-Hagané 83 (12), 773–778 (1997).

  32. G. K. Sigworth and J. f. Elliott, “The thermodynamics of liquid dilute iron alloys,” Metal Science 8, 298–310 (1974).

    Article  CAS  Google Scholar 

  33. Yu. V. Balkovoi, P. A. Aleev, and V. K. Bakanov, First-Order Interaction Parameters in Iron-Based Melts: Review (Chermetinformatsiya, Moscow, 1987).

    Google Scholar 

  34. T. Kimura and H. Suito, “Calculation deoxidation equilibrium in liquid iron,” Metall. Mater. Trans. B. 25 (1), 33–42 (1994). https://doi.org/10.1007/BF02663176

    Article  Google Scholar 

  35. T. Zhang, Y. Min, C. Liu, et al., “Effect of Mg addition on the evolution of inclusions in Al–Ca deoxidized melts,” ISIJ Intern. 55 (8), 1541–1548 (2015). https://doi.org/10.2355/isijinternational.ISIJINT-2014-691

  36. V. I. Yavoiskii, Theory of Steelmaking Processes (Metallurgiya, Moscow, 1967).

    Google Scholar 

Download references

Funding

This work was supported by the Government of the Russian Federation (decision no. 211 of March 16, 2013), agreement no. 02.A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Mikhailov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, G.G., Makrovetz, L.A., Samoilova, O.V. et al. Phase Equilibria in the Liquid Steel Deoxidized with Aluminum and Calcium in the Presence of Magnesium. Russ. Metall. 2020, 640–648 (2020). https://doi.org/10.1134/S0036029520060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520060130

Keywords:

Navigation